MOMENTUM DISTRIBUTIONS AND PRODUCTION CROSS SECTIONS OF PROJECTILE-LIKE FRAGMENTS

S. Momota^a, I. Tanihata^b, A. Ozawa^b, M. Notani^{b1},K. Yoshida^b, K. Morimoto^b, T. Onishi^{b2}, T. Yamaguchi^{b3}, A. Yoshida^b, Y.X. Watanabe^{b4}, L. Zhong^{b5}, M. Kanazawa^c, A. Kitagawa^c, M. Suda^c, Y. Nojiri^a

^aKochi University of Technology, Tosayamada, Kochi, Japan

^bRIKEN, Hirosawa 2-1, Wako, Saitama, Japan

^cNIRS, Inage, Chiba, Saitama, Japan

To investigate the production mechanism of projectile-like fragments (PLF's) at intermediate energies, the momentum distributions of PLF's produced in the reactions at E/A = 95, 290, and 430 MeV were measured at RIKEN and NIRS. The production cross sections (σ_F 's) were derived by integrating observed momentum distributions. The present results are useful to apply the RI beam to the various fields.

At RIKEN, the production rates of PLF's produced in a reaction ${}^{40}\text{Ar}+{}^{9}\text{Be}$ at E/A = 95 MeV were measured as a function of the longitudinal momentum $(P_{\rm L})$ and the transverse momentum $(P_{\rm T})$. In this measurement, the correlation between $P_{\rm T}$ distribution and $P_{\rm L}/A$, which was suggested in [1], was observed clearly. And the dependence of the correlation on the mass of PLF was found.

At NIRS, similar measurements were performed for PLF's from ¹²C, ¹⁴N, ¹⁶O, and ⁴⁰Ar fragmentations at E/A = 290 and 430MeV with ¹²C, ²⁷Al, and ¹⁹⁷Au target. The correlation between $P_{\rm T}$ distribution and $P_{\rm L}/A$ was observed as in the measurement at E/A = 95MeV. In the reaction ⁴⁰Ar+¹⁹⁷Au at E/A = 290MeV, $P_{\rm T}$ distribution was broader than that measured with smaller Z targets. This broadening effect is remarkable for heavier PLF's ($A_{\rm F} > 20$) and negligible for lighter ones. This result implies that the effect of the Coulomb force shrinks caused by the nuclear force in the case of lighter PLF's.

 σ_F 's derived from observed momentum distributions show the systematics. Considering the present results and the previous measurements, the energy dependence and the target dependence of σ_F will be discussed.

The production mechanism of PLF's will be discussed based on the present results by comparing with the theoretical results.

References

[1] S. Momota *et al.*, Nuclear Physics A, **701**, (2002), 150c

¹Present address: CNS, Hirosawa 2-1, Wako, Saitama, Japan

²Present address: Hitachi High-Technologies Corporation, Ibaraki, Japan

³Present address: GSI, Darmstadt, Germany

⁴Present address: IPNS, KEK, Tsukuba, Ibaraki, Japan

⁵Present address: Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, PRC