日本物理学会 2017年秋期大会 宇都宮大学(峰キャンパス) Sep./14/2017

中間エネルギーにおける 入射核破砕片の偏向

九州国際重粒子線がん治療センター 金澤 光隆 放射線医学総合研究所 北川 敦志,佐藤 真二

散乱における核ポテンシャル

- **散乱粒子の角度分布**

 反応メカニズム・核構造
 光学ポテンシャルによる散乱
- 光学ポテンシャル

クーロン+核 (real + imaginary)

@E<100 MeV/u 核 = attractive real part + absorptive imaginary part 入射エネルギー依存性

偏向現象に関与

Elastic scattering of p on ⁴⁰Ca A. Nadasen et al., Phys. Rev. C 23 (1981), 1023-

引力から斥力へ

• 核子の弾性散乱で多くの測定

・引力→斥力@200~300 MeV/u
 Ex. p + 40Ca By L.G. Arnold et al.,

• HI - HIの理論的研究

Complex G-matrix interaction and the double-folding model

T. Fukumoto et al., Phys. Rev. C 82,(2010) 044612.

しかし, HI - HIの測定が少ない

Real part of nuclear potential : p+⁴⁰Ca L.G. Arnold et al., Phys. Rev. C 25(1982) 936-

100 MeV/uにおける表面反応

偏向現象を利用した核偏極生成

³⁶Ar (100 MeV/u) + Au \rightarrow ³⁵Cl + X K. Matsuta et al., Nucl. Phys. A 25, 383c (2002).

表面反応における偏向現象

100 MeV/uにおける表面反応

偏向現象を利用した核偏極生成

³⁶Ar (100 MeV/u) + Au \rightarrow ³⁵Cl + X K. Matsuta et al., Nucl. Phys. A 25, 383c (2002).

研究の目的

E = 290 MeV/uの表面反応で測定された 角度分布

→ 偏向角度

核ポテンシャルの斥力性 エネルギー依存性を持ち重イオン に適用できる核ポテンシャルで解析

How about $E = 200 \sim 300$?

HIMAC 加速器施設での測定

HIMAC加速器+ SB2分離器

反応系・アクセプタンス

1核子はぎ取り or 交換反応 反応: ⁴⁰Ar + ^AZ → ³⁹Cl, ⁴⁰Cl ⁸⁴Kr + ^AZ → ⁸³Br, ⁸³Kr, ⁸⁴Br, ⁸⁴Rb 290 MeV/u 標的: ¹²C, ²⁷Al, ⁹³Nb, ¹⁵⁹Tb, ¹⁹⁷Au 1.0 0.8 0.5 0.5 0.333 mm

アクセプタンス

	⁴⁰ Ar	⁸⁴ Kr
Δ <i>Ρ</i> /Ρ0 (%)	1.0	0.5
$\Delta \theta_x$ (mrad)	16	8

角度分布

84 Kr + Au $\rightarrow ^{83}$ Br + X

解析関数: 偏向 + フェルミ運動量による広がり

$$f(P_{\mathsf{T}}) = k \left\{ \exp\left(-\frac{\left(P_{\mathsf{T}} - \Delta P_{\mathsf{T}}\right)^{2}}{2\sigma_{\mathsf{T}}^{2}}\right) + \exp\left(-\frac{\left(P_{\mathsf{T}} + \Delta P_{\mathsf{T}}\right)^{2}}{2\sigma_{\mathsf{T}}^{2}}\right) \right\}$$

解析結果:偏向角度

ATともに偏向角度が増加

核ポテンシャル:Arビーム

核ポテンシャルの実部

重イオンビームに適用可能

Nucleus-nucleus proximity pot.

W.D. Myers et al., Phys. Rev. C 62 (2000), 044610

エネルギー依存性

Global opt. pot. derived from the microscopic folding model

T. Fukumoto et al., Phys. Rev. C 85, 044607 (2012)

偏向角度:ポテンシャルから導出

Coulomb. pot. + Nucl. pot.による入射核の偏向 S. Momota et al., Nucl. Phys. A 958, 219–233, (2017).

偏向角度:実測値との比較

S. Momota et al., Nucl. Phys. A 958, 219–233, (2017).

偏向現象:*E*~100 MeV/u

³⁶Ar (100 MeV/u) + Au \rightarrow ³⁵Cl + X

K. Matsuta et al., Nucl. Phys. A 25(2002) 383c-

Deflection angle 2.3 deg. ~ 40 mrad

偏向現象:*E*~100 MeV/u

36 Ar (100 MeV/u) + Au $\rightarrow ^{35}$ Cl + X

K. Matsuta et al., Nucl. Phys. A 25(2002) 383c-

Deflection angle 2.3 deg. ~ 40 mrad

Obs. deflection angle agrees with that consists both of Coulomb and nuclear potentials.

290 MeV/uで観測した表面反応生成物の角度分布

→ 偏向現象

- 斥力的核力を示唆
- しかし、断定はできない.
- •より精度の高い測定のために
 - H380実験@HIMAC施設を実施予定
 - E = 100 ~ 400 MeV/c, より高い角度分解能

^{40}Ar + Tb \rightarrow ^{40}Cl

84 Kr + Au \rightarrow 84 Rb

 $^{40}\text{Ar} + \text{Tb} \rightarrow ^{40}\text{Cl}$

84 Kr + Au $\rightarrow ^{84}$ Rb

 $^{40}\text{Ar} + \text{Tb} \rightarrow ^{40}\text{Cl}$

Ambiguities in counting : $\sim 1 \%$

84 Kr + Au $\rightarrow ^{84}$ Rb

~10 %

~1 %

Prod. rate = Counting rate / Primary-beam intensity -> Ang. Dist.