5th International Conference on Nuclear Fragmentation Oct./04-11/2015, Kemer, Turkey

Velocity-dependent transverse momentum distribution of projectilelike fragments at 95 MeV/u

Sadao MOMOTA Kochi University of Technology

r280n collaboration

1

Introduction

Investigation of unstable nuclei

Fragmentation process

Production of a wide range of isotopes

High quality as secondary beam

Momentum distribution of fragments

- E dissipation : low
- Narrow width
- Simple & well studied at relativistic *E*

Therefore

 Separation of objective isotope with high efficiency *P*_L distribution of ¹⁰Be produced from ¹²C (2.1 GeV/nucleon)+⁹Be D.E. Greiner et al., Phys. Rev. Lett. 35(1975) 152

Formulation for practical use

Transportation/separation of fragments through fragment separator

Performance of separator is simulated by means of

LISE++, MOCADI, ... Ex. ⁴⁰Ca(80 AMeV) + Be optimized for ³²Mg http://lise.nscl.msu.edu/introduction.html

Key parameters for simulation $\sigma_{\text{prod.}}$ PL, PT distribution Fragment velocity , Momentum distribution / Cross section, Excitation energy and etc 40Ar(140.0 Me\//u) + Br Parallel momentum distribution been used in the program (MeV/c) = 199.7 with Gamma-factor = 229.7 [1] A.S.Goldhaber Phys.Lett.B 53(1974)306 $G_{II}^2 = G_0^2 \frac{A_F(A_F - A_F)}{A_F - 1}$ $\sigma_0 = 90 \qquad \sigma_{11} = 230.6$ [2] D.J.Morrissey Phys.Rev.C 39(1989)460 $\sigma_{II}^2 = \sigma_{IM}^2(A_p - A_p)$ σ_M= 87 σ_{II} = 245.9 W.A.Friedman Phys.Rev.C 27(1983)569 $\sigma_{II}^2 = \frac{\mu}{2x_0} \left[\frac{1+0.5y}{\sqrt{1+y}} + \frac{1}{\mu x_0} \right]$ settings Ø_{II} = 154.8 $\alpha = \frac{\sigma_{\text{low}}}{\sigma_{\text{u}}} - 1 = 1 - \frac{\sigma_{\text{high}}}{\sigma_{\text{u}}}$ (7) Help etry coefficient for an-like distributions [1-3] alpha (%) = settings 000 91.5 0 11 99.7 v, NPA 734(2004)536 [a] Coulomb energy correction [W.A.Friedman, PRC $\sigma_0^* = \sigma_0 \left(1 - E_B / E_{CM}\right)^{1/2}$ corrected [MeV/c] $\sigma_0^* = (\sigma_0 - 20 + 2A_P/3)$ [b] Particle mass correction [R.K.Tripathi, L.W.Townsend, PRC 49(1994)2237] σ_D = 200 MeV/c $\sigma_{\perp}^2 = \sigma_{II}^2 + \sigma_D^2 \frac{A_F(A_F-1)}{A_F(A_F-1)}$ 🔲 Make default 0_= 279.7 MeV/c 🗸 OK 🛛 🗶 Cancel 🦿 Help Few systematic studies on P_T S. Momota NUFRA2015, Oct./09/2015

Object of this talk

7

Remarkable and systematic correlation between P_T distribution and P_L of fragmentation products at $E \sim 100$ MeV/u

- 1. Earlier works on P_L , P_T distributions
- 2. Experimental (RIPS-RIKEN)
- 3. Correlation obtained from experimental results
- 4. Comparison with microscopic dynamic model
- 5. Conclusions

Previous studies on momentum distributions

Isotropic distribution at relativistic E

9

NUFRA2015, Oct./09/2015

400

Model based on Fermi momentum

Assumption : Independent removal of nucleons in projectile

Momentum distribution of fragments corresponds to statistical sum of Fermi momentum for each removed nucleon.

Formulation proposed by Goldhaber

$$\sigma_{\rm GH}^{2} = \frac{A_{\rm F}(A_{\rm P} - A_{\rm F})}{A_{\rm P} - 1} \sigma_{0}^{2}$$

$$\sigma_0 = \frac{P_{\rm F}}{\sqrt{5}} \sim 100 \; {\rm MeV/c}$$

A.s. Goldhaber, Phys. Lett. B 53, 306 (1974).

Simple and successfully applied to a wide range of reaction system

11

Success of Goldhaber model

Deviation from isotropic dist. at $E \sim 100 \text{ MeV/u}$

P_L distribution : Low momentum tail

Universal parametrization obtained from experimental results O. Tarasov, Nucl. Phys. A 734 (2004) 536.

$$f(P_{\rm L}) = \exp\left(\frac{P_{\rm L}}{\tau}\right) \cdot \left[1 - erf\left(\frac{P_{\rm L} - P_0 + \sigma_{\rm pf}^2 / \tau - s \cdot \tau}{\sqrt{2}\sigma_{\rm pf}}\right)\right]$$
$$\tau = coef \cdot \frac{\sqrt{A_{\rm F} \cdot E_{\rm S}}}{\beta}$$
$$\sigma_{\rm pf} = \beta \sigma_{\rm pf}^2 \frac{A_{\rm F}(A_{\rm P} - A_{\rm F})}{A_{\rm P} - 1}$$

Formulated momentum distributions have been incorporated into simulation.

S. Momota

NUFRA2015, Oct./09/2015

Deviation from isotropic dist. at $E \sim 100$ MeV/u

13

PT distribution : Additional width

 P_{T} distribution observed at 90 MeV/u ¹⁶O + ²⁷Al \rightarrow ^AZ + X

K van Bibber et al., Phys. Rev. Lett. 43 (1979) 840.

Additional width due to orbital deflection by target nucleus

$$\sigma_{\rm T}^2 = \sigma_{\rm GH}^2 + \sigma_{\rm D}^2$$

Empirical formulation for σ_{D}

$$\sigma_{\rm D}^{2} = \frac{A_{\rm F}(A_{\rm F}-1)}{A_{\rm P}(A_{\rm P}-1)} \sigma_{2}^{2}$$

Usually applied with $\sigma_2 \sim 200$ MeV/c.

However, the reliability of the formulation is doubtful

- scarce systematic measurements at *E* ~ 100 MeV/u
- no measurements as a func. of *v*. suggested from asymmetric *P*₁ dist.

Velocity dependent PT distribution

Experimental

Experimental : fragment separator

RIKEN Ring cyclotron + RIPS

Experimental : fragment separator RIKEN Ring cyclotron + RIPS

Experimental : fragment separator

RIKEN Ring cyclotron + RIPS

Experimental : fragment separator RIKEN Ring cyclotron + RIPS

Reaction : ⁴⁰Ar (95 MeV/u) + ⁹Be

Identification : TOF, ΔE , $B\rho$

Acceptance : Slit after target, F1

Beam intensity monitor : PL@target Ambiguity of beam intensity : $\sim \pm 5$ %

Experimental : fragment separator

RIKEN Ring cyclotron + RIPS

Results & Analysis

Width of P_T distribution

Correlation between σ_{T} and velocity

24

 ΔP : shift from primary beam velocity

P_L distribution Deceleration : ~ 300 MeV/c Larger width for low P_L

Remarkable decreasing trend

Agreement with reference values GH@primary beam velocity GH+Bibber@center of PL dist.

Correlation between σ_{T} and ΔP_{L}

σ_{T} at projectile velocity : k_0

Reduced width : σ_0

σ_{T} at center of P_{L} distribution

Slope parameter : k₁

Empirical formulation of σ_{T}

Width of P_T distribution : σ_T Monotonically decreasing with velocity $\sigma_T = k_0 + k_1 \Delta P_L$ σ_T at projectile velocity : k_0 $\sigma_T(\Delta P_L=0) = \sigma_L = \sigma_{GH}$ Slope parameter : k_1 Depends on A_F $k_1 = -0.384 + 0.0273A_F + 0.000631A_F^2$ Microscopic reaction model can reproduce behaviors of σ_T ? can reveal origin of the behaviors?

S. Momota

NUFRA2015, Oct./09/2015

Microscopic reaction model

$P_{\rm T}$ distribution obtained by simulation

Correlation between σ_{T} and ΔP_{L}

σ_{T} at projectile velocity : k_{0}

Slope parameter : k_1

b-dependent *P*_L distribution

Contribution of impact parameter

b-dependent P_{T} distribution

$P_{\rm T}$ distribution at higher energy

$P_{\rm T}$ distribution with heavier target

Possibility to investigation proximity potential for heavy reaction system

Conclusions

• Remarkable correlation between width of $P_{\rm T}$ distribution ($\sigma_{\rm T}$) and fragment velocity ($\Delta P_{\rm L}$) has been observed at E = 95 MeV/u.

1. Simple formulation : $\sigma_T = k_0 + k_1 \Delta P_L$

2. Comparison with previous results $\sigma_T(\Delta P_L = 0) = \sigma_{GH}$

Width of P_L distribution

 $\sigma_{\rm T}$ at center of $P_{\rm L}$ dist. = $\sigma_{\rm D}$

Conventionally used value

3. Important contribution of impact parameter to understand observed correlation

41

Acknowledgements

p178n@RIPS collaboration

RCNP, Japan : I. Tanihata Tsukuba Univ., Japan : A. Ozawa The Enrico Fermi Inst., USA : M. Notani RIKEN, Japan : K. Yoshida, K. Morimoto, A. Yoshida Saitama Univ., Japan : T. Yamaguchi Hitachi Co., Japan : T. Onishi KEK, Japan : Y. X. Watanabe IMP, China : Z. Liu, and RIKEN Ring Cyclotron staff and crew

AMD calculation

Tohoku Univ., Japan : A. Ono