Velocity-dependent transverse momentum distribution of projectile-like fragments at 95 MeV/u

Sadao MOMOTA
Kochi University of Technology

r280n collaboration

Introduction
Investigation of unstable nuclei

Inverse kinematics scheme

Preparation of radioactive nuclear beams (RNBs)
1) Wide range in nuclear chart
2) High quality as a beam

Fragmentation process

Participant-spectator picture

Satisfies two requirements
1) High productivity for wide range of isotopes
2) High beam quality

→ Usually applied at RNB facilities
Production of a wide range of isotopes

Fragments prod. from $^{124}\text{Sn}+^{124}\text{Sn}$ at 1 AGeV

Produced isotopes

High quality as secondary beam

Momentum distribution of fragments
- E dissipation: low
- Narrow width
- Simple & well studied at relativistic E

Therefore
- Separation of objective isotope with high efficiency

P_L distribution of ^{10}Be produced from ^{12}C (2.1 GeV/nucleon)$+^{9}\text{Be}$

$P_0=2880$ MeV/c/A
Formulation for practical use

Transportation/separation of fragments through fragment separator

Performance of separator is simulated by means of LISE++, MOCADI, ...

Ex. \(^{40}\text{Ca}\) (80 AMeV) + Be optimized for \(^{32}\text{Mg}\)

http://lise.nscl.msu.edu/introduction.html

Key parameters for simulation

\(\sigma_{\text{prod.}}, P_{L}, P_{T}\) distribution

Few systematic studies on \(P_{T}\)

Object of this talk

Remarkable and systematic correlation between \(P_{T}\) distribution and \(P_{L}\) of fragmentation products at \(E\sim 100\) MeV/u

1. Earlier works on \(P_{L}, P_{T}\) distributions
2. Experimental (RIPS-RIKEN)
3. Correlation obtained from experimental results
4. Comparison with microscopic dynamic model
5. Conclusions
Previous studies on momentum distributions

Isotropic distribution at relativistic E

$E \gtrsim 1$ GeV/u

- Gaussian-type distribution with small energy dissipation
- Isotropic distribution $\sigma_L = \sigma_T$ to an accuracy of 10%

→ Contribution of Fermi momentum
Model based on Fermi momentum

Assumption:
Independent removal of nucleons in projectile

Momentum distribution of fragments corresponds to statistical sum of Fermi momentum for each removed nucleon.

Formulation proposed by Goldhaber

\[\sigma_{GH}^2 = \frac{A_F(A_p - A_F)}{A_p - 1} \sigma_0^2 \]

\[\sigma_0 = \frac{P_F}{\sqrt{5}} \sim 100 \text{ MeV/c} \]

Simple and successfully applied to a wide range of reaction system

Success of Goldhaber model

Width of \(P_L \) distribution of fragments
\(^{36}\text{Ar}(1.05 \text{ GeV/nucleon}) + ^9\text{Be} \)

\[\sigma_0 = 98.2 \text{ MeV/c} \]

\[\frac{P_F}{\sqrt{5}} \sim 100 \text{ MeV/c} \]
Deviation from isotropic dist. at \(E \sim 100 \text{ MeV/u} \)

\(\mathcal{P}_L \) distribution : Low momentum tail

Universal parametrization obtained from experimental results

\[
f(P_L) = \exp\left(\frac{P_L}{\tau}\right) \left[1 - \text{erf}\left(\frac{P_L - P_0 + \sigma_{p_f}^2 / \tau - s \cdot \tau}{\sqrt{2} \sigma_{p_f}}\right)\right]
\]

\[
\tau = \text{coef} \cdot \frac{\sqrt{A_T \cdot E_S}}{\beta}
\]

\[
\sigma_{p_f} = \beta \sigma_{p_f}^2 \frac{A_F (A_F - 1)}{A_P - 1}
\]

Formulated momentum distributions have been incorporated into simulation.

Deviation from isotropic dist. at \(E \sim 100 \text{ MeV/u} \)

\(\mathcal{P}_T \) distribution : Additional width

Additional width due to orbital deflection by target nucleus

\[
\sigma_T^2 = \sigma_{GH}^2 + \sigma_D^2
\]

Empirical formulation for \(\sigma_D \)

\[
\sigma_D^2 = \frac{A_F (A_F - 1)}{A_P (A_P - 1)} \sigma_2^2
\]

Usually applied with \(\sigma_2 \sim 200 \text{ MeV/c} \).

However, the reliability of the formulation is doubtful

- scarce systematic measurements at \(E \sim 100 \text{ MeV/u} \)
- no measurements as a func. of \(\nu \)

suggested from asymmetric \(\mathcal{P}_T \) dist.
Velocity dependent P_T distribution

Angular dist. observed at 44 MeV/u

$^{40}\text{Ar} + ^{58}\text{Ni} \rightarrow ^{21}\text{Ne} + X$

- $\nu > 0.25 \, c$
- $\nu < 0.25 \, c$

Expected trend for width of P_T distribution

Contribution of collective effect was considered to understand ν-dep. angular distribution.

It is suggestive, but further investigations are needed to
1) formulate ν-dependent behavior
2) understand based on reaction process.

Experimental

S. Momota NUFRA2015, Oct/09/2015
Experimental : fragment separator
RIKEN Ring cyclotron + RIPS

Reaction : $^{40}\text{Ar} \ (95 \text{ MeV/u}) + ^9\text{Be}$

Identification : TOF, ΔE, $B\rho$

Experimental : fragment separator
RIKEN Ring cyclotron + RIPS

Reaction : $^{40}\text{Ar} \ (95 \text{ MeV/u}) + ^9\text{Be}$
Experimental : fragment separator
RIKEN Ring cyclotron + RIPS

Reaction : 40Ar (95 MeV/u) + 9Be

Identification : TOF, ΔE, B_p

Acceptance : Slit after target, F1

$\Delta P/P_0 = \pm 0.5\%$
$\Delta \theta_x, \Delta \theta_y = \pm 7.5$ mrad

Beam intensity monitor : PL@target
Ambiguity of beam intensity : $\sim \pm 5\%$
Experimental: fragment separator
RIKEN Ring cyclotron + RIPS

Reaction: ^{40}Ar (95 MeV/u) + ^9Be
Identification: TOF, ΔE, B_p
Acceptance: Slit after target, F1
Beam intensity monitor: PL@target
Ambiguity of beam intensity: $\sim \pm 5\%$
Angular distribution:
Beam swinger + slit after target
Keep optical axis of RIPS at any angle setting
\rightarrow Constant values for transmission and detection efficiencies of fragmentation products.

Results & Analysis
Width of P_T distribution

Obtained from angular distribution

$$B_\theta = 3.600 \text{ Tm}$$

Fitting with a Gaussian function

$$N(\theta) = A \exp \left\{ -\frac{\theta^2}{2\sigma_\theta^2} \right\}$$

with considering

1) Finite angular acceptance
 $\pm 7.5 \text{ mrad}$

2) Angular struggling in target
 evaluated by ATIMA

3) Emittance of primary beam
 assumed to be neglected

Width of P_T distribution

$$\sigma_T = P_L \times \sigma_\theta$$

Correlation between σ_T and velocity

40 Ar + Be \rightarrow 26 Ne + X

ΔP : shift from primary beam velocity

P_L distribution

Deceleration : $\sim 300 \text{ MeV/c}$

Larger width for low P_L

Remarkable decreasing trend

Agreement with reference values

GH@primary beam velocity
GH+Bibber@center of P_L dist.
Correlation between σ_T and ΔP_L

Universal behaviors of σ_T

$A_F = 10 \sim 21$

$A_F = 22 \sim 33$

Fitting by a linear function: $\sigma_T = k_0 + k_1 \Delta P_L$

σ_T at projectile velocity: k_0

Good agreement with Goldhaber formulation
No additional dispersions are not needed.
Reduced width : σ_0

$$\sigma_{GH}^2 = \frac{A_F(A_p - A_F)}{A_p - 1} \sigma_0^2$$

Av. = 93.6 ± 1.3 MeV/c

93.5 ± 2.6 MeV/c

obtained from P_L dist.

Good agreement with σ_0 obtained from P_L dist.

σ_T at center of P_L distribution

In order to compare with the previous results, most probable σ_T, $<\sigma_T>$, is introduced.

$<\sigma_T>$: σ_T at center of P_L distribution

σ_T at $E=92.5$ MeV/u

Consistent with previous results on σ_T

Slope parameter: k_1

Fitting by a quadratic function:
$$k_1 = -0.384 + 0.0273A_F + 0.000631A_F^2$$

Empirical formulation of σ_T

Width of P_T distribution: σ_T
Monotonically decreasing with velocity
$$\sigma_T = k_0 + k_1 \Delta P_L$$

σ_T at projectile velocity: k_0
$$\sigma_T(\Delta P_L=0) = \sigma_L = \sigma_{GH}$$

Slope parameter: k_1
Depends on A_F
$$k_1 = -0.384 + 0.0273A_F + 0.000631A_F^2$$

Microscopic reaction model
can reproduce behaviors of σ_T?
Can reveal origin of the behaviors?
Microscopic reaction model

Collective features

-> Additional dispersion and deceleration effect

Abrasion, Excitation

AMD

$^{40}\text{Ar}(87.4 \text{ MeV/A}) + ^9\text{Be}$

$b = 0 \sim 12 \text{ fm}$

Gogny type int.

Evaporation

Statistical decay

P_T distribution obtained by simulation

$^{40}\text{Ar} + ^6\text{Be} \rightarrow ^{25}\text{Mg} + X$

P_T distribution obtained from AMD + SD calculation

Gaussian-like distribution

Width is consistent with conventional values

Fitting with a Gaussian function as for experimental results

$\rightarrow \sigma_T(\text{AMD})$
Correlation between σ_T and ΔP_L

For $A_F = 10 \sim 21$:

- $\sigma_T(\text{MeV/c})$
- $\Delta P_L(\text{MeV/c})$

For $A_F = 22 \sim 33$:

- Remarkable agreement for $A_F = 30 \sim 33$

AMD calculation roughly reproduces behaviors of σ_T.

Fitting with a linear function $\rightarrow k_0, k_1$

σ_T at projectile velocity: k_0

Not so bad, but systematically underestimate k_0 at $A_F > 30$.

AMD+SD

- GH
- GH + Bibber
- B, C
- N, O
- F, Ne
- Na, Mg
- Al, Si
Slope parameter: k_1

Parabolic trend of k_1 obtained from experimental results

AMD calculation roughly reproduces negative values for k_1. Large scattering prevents further investigations on k_1.

b-dependent P_L distribution

Impact parameter \leftrightarrow Collective/dissipative nature

Therefore, P_L distribution is expected to depend on impact parameter.

Prod. rate of 30Si vs. b

$r^{(40)Ar} + r^{(9)Be} = 6.6$ fm

$r = r_0 A^{1/3}$, $r_0 = 1.2$ fm

E-dissipation is promoted for small b.

Contribution of impact parameter

\(b \)-dependent \(P_L \) distribution

\[\frac{d\sigma}{d\Delta P_x \Delta P_y} \text{(mb/(MeV c}^{-1} A^{-1})^2) \]

\(\Delta \sigma/\Delta b \text{ (mb/fm)} \)

\(b \text{ (fm)} \)

- High \(P_L \) component
 - Contribution of larger \(b \) is dominant.

- Low \(P_L \) component
 - Contribution of smaller \(b \) is dominant.

Produced rate vs. \(b \)

\(^{40}\text{Ar} + ^{9}\text{Be} \rightarrow ^{30}\text{Si} + X \)

\(b \)-dependent \(P_T \) distribution

The width of \(P_T \) distribution is larger for small \(b \).

\(\rightarrow v \)-dependent \(\sigma_T \) would be originated from contribution of impact parameters.
P_T distribution at higher energy

$E = 95$ MeV/u

40Ar + Be \rightarrow 26Ne + X

![Graph showing P_T distribution at 95 MeV/u](image)

$E = 290$ MeV/u

40Ar + Al \rightarrow 26Na + X

![Graph showing P_T distribution at 290 MeV/u](image)

Velocity dependence is not remarkable.

P_T distribution with heavier target

Dominant contribution of repulsive Coulomb force

![Diagram showing repulsive Coulomb force](image)

- Deflection effect was observed as off-centered P_T distribution.
- Deflection is remarkable for small ΔA reaction.

Specified impact parameter can be defined for given isotope.

Possibility to investigation proximity potential for heavy reaction system

Conclusions

- Remarkable **correlation** between width of P_T distribution (σ_T) and fragment velocity (ΔP_L) has been observed at $E = 95$ MeV/u.

 1. Simple **formulation** : $\sigma_T = k_0 + k_1 \Delta P_L$

 2. Comparison with **previous results**

 $\sigma_T(\Delta P_L = 0) = \sigma_{GH}$

 Width of P_L distribution

 σ_T at center of P_L dist. = σ_D

 Conventionally used value

 3. Important contribution of **impact parameter** to understand observed correlation

Acknowledgements

- **p178n@RIPS collaboration**

 RCNP, Japan : I. Tanihata
 Tsukuba Univ., Japan : A. Ozawa
 The Enrico Fermi Inst., USA : M. Notani
 RIKEN, Japan : K. Yoshida, K. Morimoto, A. Yoshida
 Saitama Univ., Japan : T. Yamaguchi
 Hitachi Co., Japan : T. Onishi
 KEK, Japan : Y. X. Watanabe
 IMP, China : Z. Liu, and
 RIKEN Ring Cyclotron staff and crew

- **AMD calculation**

 Tohoku Univ., Japan : A. Ono