Morphological modification of surface of crystal materials by means of ionbeam induced expansion

> Sadao Momota Kochi University of Technology

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

Contents

- Introduction
- Ion-beam (IB) technology applied to micro-nano scale fabrications
- Modification of crystal materials by means of IB-induced expansion
- Conclusions

Precision of machining

100 nm

10 nm

1 nm 0.3 nm

1900

1920

Lattice const

from Presentation by N. Taniguchi at ICPE Miniaturization has stimulated a densification of fabricated structures.

1940

1960

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

1980

and

future

(西暦)

0.01

2000

0.005µm

Highly-integrated structures on material

3D micro-nano structures

- MEMS Micro Electro Mechanical System
- Micro-machining tool
- Mold
- Optical device
- Biochip

3-Axis Accelerometer

Analog Devices Co. http://www.rise.waseda.ac.jp/proj/sci/S98S08/j-S98S08.html

Motion/deformation according to acting force

3D micro-nano structures

- MEMS Micro Electro Mechanical System
- Micro-machining tool
- Mold
- Optical device
- Biochip

Diamond array tool

Morita Gr. (Toyama Univ.)

Small machining tools with high wear resistance

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

3D micro-nano structures

- MEMS Micro Electro Mechanical System
- Micro-machining tool
- Mold
- Optical device
- Biochip

Pattern transfer

→ PMMA

Mass production of structures with high aspect ratio

3D micro-nano structures

- MEMS Micro Electro Mechanical System
- Micro-machining tool
- Mold
- Optical device
- Biochip

Photonic crystal

National Inst. for Material Science http://www.nims.go.jp/jpn/news/ nimsnow/Vol4/2004-03/05.html

Selective transmission of photon wavelength, direction, confinement, etc.

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

3D micro-nano structures

- MEMS Micro Electro Mechanical System
- Micro-machining tool
- Mold
- Optical device
- Biochip

Micro inspection chip

Hitachi, Ltd.

Medical inspection in shorter time with small amount of sample

Object of this talk

Structures in micro-nano meter scale

2D-structures / Single (electronic) function

 \rightarrow **3D**-structures / Mechanical functions

Feasibility of IB-induced expansion effect :

- Morphological change
- Mechanical properties

In addition,

- Beam-material interactions
- Behaviors of defects

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

Beam-material interactions applied to fabrication processes

IB technologies in micro-nano fab.

Interaction between IB & materials

Interaction between IB & materials

- At surface : sputtering effect Removal of atoms
- Along trajectory : Production of defects Modification of lattice/chemical structures
- At final position Implantation of impurities

New possibilities of sputtering : 1 Sharpening or diamond knife

New possibilities of sputtering : 2

Wind patterns on surface

Lithography method Projection of mask pattern

Fabrication by means of IB-lithography

2D-structures on Si-crystal

Modification of mech. properties

Meas. at 200 nm (fixed) R_P = 610 nm Modification of mech. properties should be depth-dependent. However, few measurements.

Advantages and limitations

Advantages	Limitations
High reactivity	Removal process
Controllability of depth	Time consuming
Small lateral struggling	Multi-step (lithography)

Features expected for processes to fabricate 3D structures

- •Lower fluence
- •Keep good mechanical properties
- Simple process

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

Ridge on cultivated field

Expansion induced by defects

Step structure produced by Si-beam

Si (0.5~8 MeV) on (1 0 0) Si

- $n \sim 5 \times 10^{15} / cm^2$
- Exp. rate = 1.8%
- Observed expansion rate is larger than that induced by implanted Si,
 - but, not so large.
- Relaxation of defects Immigration to surface Recombination

Simulation of amorphization process

		F			F
Method	Relaxation	(eV)	(eV)	V/V_0	(eV)
100-еV іп.	z	6.5	10	1.036	-4.26
100-eV irr.	3D	6.5	2	1.035	-4.25
1-keV irr.	3D	6.5	3	1.022	-4.29
Variable E irr. ^a	3D	6.5	2	1.029	-4.26
Ouench				1.035	-4.40
Variable E irr. ^a	900 K			1.036	-4.46
		Т-Ш			
100-eV irr.	3D	8	12	1.095	-4.13
100-еV іп.	z	8	13	1.093	-4.13
1-keV irr.	3D	8	7	1.047	-4.20
1-keV irr.	z	8	13	1.045	-4.20
Variable E irr.ª	3D	8	8	1.089	-4.13
Variable <i>E</i> irr. ^b	3D	11	11	1.08	-4.14
Quench				1.019	-4.40
		SW			
1-keV irr.	3D	17	17	0.947	-4.09
Ouench				0.944	-4.11
Expt.		12 °		1.018 ^d	

Molecular dynamics simulations.

Calculated with 3 potentials EDIP, T-III, SW

Calculated results show remarkable dependence on potentials and parameters.

Even sign changes.

J. Nord et al., Phys. Rev. B65 (2002) 165329.

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

Plastic deformation

a-Si pillars irradiated with 30MeV Cu, 8.2x10¹⁴ cm²

T. van Dillen et al. Appl. Phys. Lett., 84 (200<u>4) 3591.</u>

Colloidal silica particle irradiated with 4 MeV Xe⁴⁺, 4×10^{14} cm² at 85 K.

T. van Dillen et al. Phys. Rev. B 74 (2006) 132103.

Anisotropic deformation has been observed.

Viscoelastic and free volume model H. Trinkaus and A. I. Ryazanov, Phys. Rev. Lett. 74, 5072 1995. Explained by IB-induced Newtonian viscous flow described in the above reference

Modifications of crystal materials by means of IB-induced expansion

Ion-beam facility @KUT

S. Momota et al., Rev.Sci.Instr. 75(2004) pp. 1497.

Highly-charged ions

High efficiency for beam acceleration

Kinetic energy : $E = \mathbf{q}eV$

Ex. Ar on Si, V=100 kV

P	E (keV)	Range (nm)
1+	100	~100
10+	1000	~1000

Evolution of Si-lattice system simulated by MD S. Satake et al. J. Appl. Phys. 106 (2009) 044910.

Fluence dependence is roughly OK. But, underestimate in absolute values.

Lateral deformation Deformation observed by SEM Kr (240 keV) on c-Si with stripe structures X. Guo et al., e-J. Surf. Sci. Nanotech. 13 (2015) 35. $n \sim 8 \times 10^{13} / cm^2$ Top view of line and Cross sections of the center pile space structure in stripe structure before irr. after irr. (a) width W_H W_{M} $-W_{L}$ 5 µm Remarkable expansion along lateral direction

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

Lateral deformation Fluence and size dependences

Fluence dependence

Size dependence

- 1. Max. lateral expansion is observed at $n^{-10^{14}}$ /cm².
- 2. Lateral expansion is suppressed for large size structure.

Lateral deformation Shrinkage of nano-cavities : 1

As (300 keV) on a-Si with nano-cavities M.-O. Ruault et al. Appl. Phys. Lett. 81 (2002) 2617.

Remarkable shrinkage of nano-cavities (10~20nm)

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

0 Change of Diameter (nm) -10 -563.21 nm -20 -(h) -30 -40 -50 -60 5.0kV X100,000 100nm WD 3.3mm 1013 10¹⁴ 10¹⁵ NONE NONE Fluence (ions/cm²)

1. Max. shrinkage is observed at n~3x10¹⁴ /cm².

2. Shrinkage is suppressed at higher fluence.

What does the suppression effect at higher fluence region mean?

 \rightarrow Microscopic/macroscopic observation of IB-induced defects

IB-induced defects in c-Si Analysis of RAMAN spectrum

Accumulation of defects -> amorphous Amorphous fraction obtained from RAMAN spectrum X. Guo et al. e-J. Surf. Sci. Nanotech. 13 (2015) 35.

What happens at the transitional phase ? S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

IB-induced defects in c-Si **TEM** observation

Cross-sectional TEM images of stripe structures

X. Guo et al., e-J. Surf. Sci. Nanotech. 13 (2015) 35.

Inhomogeneous defect distribution around a boundary between c-Si and a-Si region

 \rightarrow Amorphous/crystal pockets

At low fluence, defects are trapped at surfaces of a/c pockets. \rightarrow Expansion effect enhances.

At higher fluence, trapping effect is suppressed.

 \rightarrow Expansion effect decreases. $\varrho_a \sim \varrho_c$

Measurement of mech. properties

Indentation method

Nano Indenter XP/DCM (Agilent Technology)

Depth profile of mechanical properties

because irradiation effect is depth dependent. However,

Conventional method :

Measurement at fixed depth

Advanced method :

Continuous measurements by means of dynamic technique W.C. Oliver et al., J. Mat. Res. 7 (1992) 1564.

S. Momota / Int. Conf. Appl. Eng. Phys. Sep./13-16/2015 Hanoi, Vietnam

Depth profile of mech. properties

Depth-dependent mechanical properties obtained from indentation method X. Guo et al., Appl. Surf. Sci., 349 (2015) 123.

For virgin samples, consistent with conventional values Young's modulus = 176 GPa / Hardness = 13.0 GPa

IB-induced deterioration in mechanical properties is relatively small at $n^{-10^{14}}$ ion/cm².

Comparison with TEM, RBS-c results

Indentation-induced phase transition

Conclusions

IB-induced expansion effect

Feasibility of IB-induced expansion effect as fabrication method for 3D-micro-nano scale structures

- 1. Control of swelling & lateral deformation on crystal materials was achieved by irradiating IB with relatively low fluence.
- 2. Small deterioration in mechanical properties without post-treatment was confirmed.

Behaviors of defects induce by IB irradiation

- 1. Inhomogeneous defect distribution would play an important role in IB-induced expansion effect on crystal.
- 2. Evolutional behavior of indentation-induced phase transition is found in depth-dependent indentation measurements.

Acknowledgements

Tokyo Univ. of Science : J. Taniguchi, S. Satake Chiva Univ. : N. Morita Kochi Univ. of Tech. : N. Nitta, J. Zhang, X. Guo, and other Lab. members

This work was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research(C), Number 25420061