Inelastic process observed in isobaric charge-exchange reaction of ⁵⁶Fe at 500 MeV/u

<u>S. Momota¹</u>, T. Yamaguchi², T. Suzuki², F. Suzuki², K. Sato², S. Yamaki² J. Kouno², A. Ozawa³, R. Nishikiori³, D. Nishimura⁴, M. Fukuda⁵, S. Suzuki⁶, M. Nagashima⁶, A. Kitagawa⁷, S. Sato⁷

¹Kochi Univ. of Tech., Tosayamada, Kochi 782-8502, Japan

² Department of Physics, Saitama University, Saitama, 338-8570, Japan

³ Institute of Physics, University of Tsukuba, Ibaragi 305-8571, Japan

⁴ Department of Physics, Tokyo University of Science, Noda 278-8510, Japan

⁵Department of Physics, Osaka University, Toyonaka 560-0043, Japan

⁶ Department of Physics, Niigata University, Niigata 950-2181, Japan

⁷ National Institute of Radiological Sciences(NIRS), Chiba 263-8555, Japan

Contact email: momota.sadao@kochi-tech.ac.jp

In the longitudinal-momentum (P_L) distribution of products in isobaric charge-exchange reactions (p, n) and (³He, t), inelastic component, which is attributed to Δ excitation, has been investigated. For example, Udagawa et al. showed that the inelastic component can be a good probe to study nuclear medium effect on Δ excitation [1]. Recently, inelastic component was successfully observed in P_L distribution with ²⁰⁸Pb beam at 1A GeV by using the spectrometer FRS at GSI [2]. In the present study, the P_L distribution in isobaric charge-exchange reaction was observed at E = 500 MeV/u, which is relatively lower than the previous experiments.

The measurement was performed at NIRS. ⁵⁶Co was produced through isobaric chargeexchange reaction by bombarding a 0.5-mm thick C-target and a 1-mm thick CH₂ target with a primary beam of ⁵⁶Fe at E=500 MeV/u, provided by HIMAC synchrotron accelerator. The target thickness was selected to make the energy loss equivalent for C and CH₂ target. In order to observe the P_L distributions, the magnetic rigidity of the spectrometer was varied with a step of 0.1% of that corresponding to the primary-beam velocity. The produced ⁵⁶Co was separated and identified with a high-energy transport system, SB2, used as a doubly achromatic spectrometer. P_L distribution with the proton target is provided by subtracting P_L distribution with C target from that with CH₂ target. As shown in Fig. 1, the inelastic peaks are observed for both target nuclei. P_L distribution with the proton target shows similar behavior to that observed in very recent experiment with a ¹³⁶Xe beam at 500A MeV [3]. The inelastic peak grows and shifts upward for C target compared with proton target.

Figure 1: Observed P_L distribution of ⁵⁶Co in the frame of primary beam.

[1] T. Udagawa et al., Phys. Rev. C 49, 3162 (1994);

[2] A. Kelić et al., Phys. Rev. C 70, 064608 (2004):

[3] J. Vargas et al., Nucl. Instr. and Meth. Phys. Res. A 707, 16 (2013);