MOMENTUM DEPENDENCE OF SPIN POLARIZATION FOR BETA-EMITTING NUCLEI PRODUCED THROUGH CHARGE EXCHANGE REACTION AT INTERMEDIATE ENERGY

S. Momota¹, M. Mihara², D. Nishimura³, M. Fukuda², Y. Kamisho², M. Wakabayashi², K. Matsuta², S. Suzuki⁴, M. Nagashima⁴, Shengyun Zhu⁵, Daqing Yuan⁵, Yongnan Zheng⁵, Ping Fan⁵, T. Izumikawa⁶, A, Kitagawa⁷, S. Sato⁷, M. Kanazawa⁷, M. Torikoshi⁷, T. Minamisono², Y. Nakamura⁴, K. Tashiro⁴, A. Honma⁴, N. Yoshida⁸, H. Shirai⁸, T. Ohtsubo⁴, T. Nagatomo⁹, H. Uenishi², K. Iwamoto², M. Yaguchi², T. Ogura⁴, T. Ito⁴, K. Yamamura¹⁰, Y. Ichikawa⁸, Y. Nojiri¹, J. R. Alonso¹¹, and T.J.M. Symons¹¹

¹Kochi Univ. of Tech., Kochi 782-8502, Japan, ²Osaka Univ., Osaka 560-0043, Japan ³ RIKEN, Saitama 351-0198, Japan, ⁴ Niigata Univ., Niigata 951-2181, Japan

⁵ CIAE, Beijing 102413, People's Republic of China, ⁶ RI Center, Niigata Univ., Niigata 951-8510, Japan ⁷ NIRS, Inage, Chiba 263-8555, Japan, ⁸ TIT, 2-12-1, Tokyo 152-8550, Japan, ⁹ J-PARC, Ibaraki 319-1195, Japan,

¹⁰ Fukui Univ. of Tech., Fukui 910-8505, Japan, ¹¹ LBL, Berkeley, CA 94720, USA

momota.sadao@kochi-tech.ac.jp

Polarized beta-emitting nuclei are valuable probes to study HF fields of materials by applying β -NMR technique. For efficient and precise studies, it is necessary to prepare beta-emitting nuclei with large nuclear polarization and high purity. In case of proton-rich β -emitting nuclei, it is expected that charge exchange reaction would have an advantage to reduce contaminations to realize high purity. In the previous study [1], nuclear polarization of proton-rich β -emitting nuclei ²⁸P was produced through charge exchange reaction at E=100 MeV/u. According to observed nuclear polarization and momentum distribution, it was suggested that two different reaction mechanisms, knockout and pickup-abrasion process, would contribute to polarization phenomena in charge exchange reaction.

In the present study, nuclear polarization of ²⁸P was produced though charge exchange reaction ²⁸Si+⁹Be at E=100 MeV/u by selecting longitudinal momentum ($p_{\rm L}$) and ejecting angle. Produced nuclear polarization was observed as β -ray asymmetry (AP) by applying β -NMR technique. As shown in Fig. 1(a), observed AP shows remarkable $p_{\rm L}$ dependence. At higher $p_{\rm L}$, where knockout dominant process would be to include the primary peak of $p_{\rm I}$ distribution shown in Fig. 1(b), small AP was observed. At lower $p_{\rm L}$, where pickup-abrasion process would be dominant, AP shows drastic increase. In addition, transverse momentum $(p_{\rm T})$ distribution of ²⁸P was observed as angular distribution. The dispersion of $p_{\rm T}$ distribution ($\sigma_{\rm T}$) increases at lower $p_{\rm L}$. This behavior supports $p_{\rm L}$ dependent contribution of two reaction mechanisms to nuclear polarization phenomena.

Fig. 1. $p_{\rm L}$ dependence of observed AP and $p_{\rm L}$ distribution of ²⁸P

References

[1] K. Matsuta et al., Hyperfine Interact. 198 (2010), 147