Momentum distribution and production cross section of projectile-like fragments at intermediate energies

Sadao MOMOTA Kochi University of Technology

ntroduction

S. Momota : Jul./12/11 RIBF seminar

Fragmentation process - as a means to produce RI beams

S. Momota : Jul./12/11 RIBF seminar

Fragmentation process - as a means to produce RI beams

Quality of RI beams

Intensity/Purity

• Simulation code INTENSITY, LISE, MOCADI

• Empirical systematics/ formulation EPAX etc.

• **O**Prod.

• P_L , P_T distribution

Nuclear database

Transport of heavy ions in materials

- Radiation shield at RIB facility
- Space mission (Irr. effect of galactic cosmic ray)
- HI therapy

Nuclear database

Transport of heavy ions in materials

- Radiation shield at RIB facility
- Space mission (Irr. effect of galactic cosmic ray)
- HI therapy

Heavy Ions: small in number - but important in radiation effects

Zi-Wei Lin, Workshop at Arkansas State Univ., April 14, 2005

$\begin{array}{l} Momentum dist.\\ and \sigma_{Prod.} \end{array}$

Evaluation of prod. rate

- In case of LISE++

Formulation/Systematics ← Prod. process

Energy necessary to

Lists and musical and (Day)

8

MeV (default 8)

0.993

Participant-Spectator

- Independent particle model

Participant-Spectator

- Independent particle model

This model provides 1) Velocity shift : small 2) *P* dist. : *P*_{Fermi} of removed nucleons

- Isotropic distribution

 ^{12}C (2.1 GeV/u) + Be \rightarrow ^{10}Be <Pa>> d0 dP O, O, O, ¢ Fitted Gaussian -4 10 -400 -200 200 400 0 (MeV/c) D.E. Greiner et al., PRL 35 (1975) 152.

- Isotropic distribution

 $^{12}C(2.1 \text{ GeV/u}) + \text{Be} \rightarrow ^{10}\text{Be}$ dn dn ⊡ o, o, o, -2 10 Fitted Gaussian -4 10 -400 -200 200 400 0 (MeV/c) D.E. Greiner et al., PRL 35 (1975) 152.

 Isotropic Gaussian dist.
 σ(P_{High}) ~ σ(P_{Low})
 σ(P_T) ~ σ(P_L)

 Small velocity shift

- Dispersion of distribution

³⁶Ar(1.05 GeV/u) + Be

M. Caamano et al, Nucl. Phys. A 733 (2004) 187.

- Dispersion of distribution

M. Caamano et al, Nucl. Phys. A 733 (2004) 187.

σ(*P*_L) ← *P*_{Fermi} of removed nucleons A.S. Goldhaber, Phys. Lett. B 53 (1974) 244.

$$\sigma_{\rm GH} = \sigma_0 \sqrt{\frac{A_{\rm F}(A_{\rm P} - A_{\rm F})}{A_{\rm P} - 1}}$$
$$\sigma_0 \sim 100 \,({\rm MeV/c})$$

- Dispersion of distribution

M. Caamano et al, Nucl. Phys. A 733 (2004) 187.

 $\sigma_0 = 98.2 \pm 0.2 \text{ MeV/c}$

σ(*P*_L) ← *P*_{Fermi} of removed nucleons A.S. Goldhaber, Phys. Lett. B 53 (1974) 244.

$$\sigma_{\rm GH} = \sigma_0 \sqrt{\frac{A_{\rm F}(A_{\rm P} - A_{\rm F})}{A_{\rm P} - 1}}$$
$$\sigma_0 \sim 100 \,({\rm MeV/c})$$

- Dispersion of distribution

M. Caamano et al, Nucl. Phys. A 733 (2004) 187.

 $\sigma_0 = 98.2 \pm 0.2 \text{ MeV/c}$

σ(*P*_L) ← *P*_{Fermi} of removed nucleons A.S. Goldhaber, Phys. Lett. B 53 (1974) 244.

$$\sigma_{\rm GH} = \sigma_0 \sqrt{\frac{A_{\rm F}(A_{\rm P} - A_{\rm F})}{A_{\rm P} - 1}}$$
$$\sigma_0 \sim 100 \,({\rm MeV/c})$$

 $\sigma(P_{\rm L}) \sim \sigma(P_{\rm T})$

P_L dist. at $E \sim 100$ MeV/u

- Asymmetric longitudinal distribution

 40 Ar (90 MeV/u) + 9 Be $\rightarrow ^{30}$ Mg

P_L dist. at $E \sim 100$ MeV/u

- Asymmetric longitudinal distribution

 40 Ar (90 MeV/u) + 9 Be $\rightarrow ^{30}$ Mg

- Additional dispersion found in P_{T}

K. Van Bibber et al., PRL 43 (1979) 840.

Anisotropy induced by orbital dispersion $\sigma(P_L) < \sigma(P_T)$

Empirical formulation

K. Van Bibber et al., Phys. Rev. Lett. 43 (1979) 840.

$$\sigma(P_{\perp}) = \sqrt{\sigma(P_{//})^2 + \frac{A_{\rm F}(A_{\rm F} - 1)}{A_{\rm P}(A_{\rm P} - 1)}\sigma_{\rm D0}^2}$$

$$\sigma_0 = 195 \,({\rm MeV/c})$$

- Additional dispersion found in P_{T}

Anisotropy induced by orbital dispersion $\sigma(P_L) < \sigma(P_T)$

Empirical formulation *K. Van Bibber et al.*, Phys. Rev. Lett. 43 (1979) 840.

$$\sigma(P_{\perp}) = \sqrt{\sigma(P_{//})^2 + \frac{A_{\rm F}(A_{\rm F} - 1)}{A_{\rm P}(A_{\rm P} - 1)}\sigma_{\rm D0}^2}$$

$$\sigma_0 = 195 \,({\rm MeV/c})$$

Poor systematic measurements

K. Van Bibber er ar., I HE 43 (1979) 040.

- Orbital deflection in case of heavy target

- Orbital deflection in case of heavy target

K. Matsuta et al., NP A701 (2002) 383c.

Target, E dependence

Evaluation of σ_{Prod} .

- Theoretical calculation
 - *ex.* A) ABRABLA : abrasion-ablation model *J.J. Gaimard et al.*, Nucl. Phys. A 53 I (1991) 709.

B) QMD, AMD

Time consuming, ambiguity of model

Empirical formulation

ex. EPAX : Based on high-E spallation K. Sümmerer et al., Phys. Rev. C 61 (2000) 034607. Simple and good for rough estimation

Evaluation of σ_{Prod} .

- Theoretical calculation
 - *ex.* A) ABRABLA : abrasion-ablation model *J.J. Gaimard et al.,* Nucl. Phys. A 53 I (1991) 709.

B) QMD, AMD *Time consuming, ambiguity of model*

Empirical formulation

ex. EPAX : Based on high-E spallation *K. Sümmerer et al.*, Phys. Rev. C 61 (2000) 034607. *Simple and good for rough estimation*

> *E*, target dependence Contribution of nucl. structure

Experimental setup

HIMAC@NIRS 290 MeV/u
RRC@RIKEN 90, 95 MeV/u

- RIKEN & NIRS

•RRC+RIPS S. Momota et al., Nucl. Phys. A746, 407c (2004). M. Notani et al., Phys. Rev. C 76, 044605 (2007). PL dist.(Machine study) Beam : ⁴⁰Ar @90 MeV/u Target : ⁹Be PT dist. (r280n) Beam : ⁴⁰Ar @95 MeV/u Target : ⁹Be

•HIMAC+SB2 S. Momota et al., Eur. Phys. J. Special Topics 150, 315–316 (2007). S. Momota et al., to be published in J. of Korean Phys. Soc. PL dist., PL dist. (P078, P178) Beam : ⁴⁰Ar, ⁸⁴Kr@290 MeV/u Target : ¹²C, ²⁷Al, ⁹³Nb, ¹⁵⁹Tb, ¹⁹⁷Au

Angular (P_T) distribution

Angular (PT) distribution

Particle identification

 84 Kr + 159 Tb $\rightarrow ^{A}$ Z + X

PL distribution

Analysis of P_L distributions

Analysis of P_L distributions

• ${}^{40}\text{Ar+}{}^{93}\text{Nb} \rightarrow {}^{20}\text{Ne}$

$$Y(P_{\rm L}) = \mathbf{A} \exp\left(-\frac{(P_{\rm L} - P_{\rm 0})^2}{2\sigma(P_{\rm L})^2}\right) \left\{$$

$$\begin{cases} \sigma(P_{\rm L}) = \sigma_{\rm Low} & \text{if } P_{\rm L} < P_0 \\ \sigma(P_{\rm L}) = \sigma_{\rm High} & \text{if } P_{\rm L} > P_0 \end{cases}$$

Analysis of P_L distributions

 $^{40}\text{Ar}+^{93}\text{Nb} \rightarrow ^{20}\text{Ne}$ 43**C**a 84 Kr+ 12 C -10x10⁻⁶ 80x10⁻⁹ [>]rod. Rate (Arb. Unit) 8 ^{Prod.} Rate (Arb. Unit) 60 40 σ High σι 20 $-\Delta P_{\rm I}$ 0 0 15.0 15.5 14.5 16.0 32 33 16.5x10³ 31 34x10³ 14.0 P_L (MeV/c) P_L (MeV/c)

$$Y(P_{\rm L}) = \mathbf{A} \exp\left(-\frac{(P_{\rm L} - P_{\rm 0})^2}{2\sigma(P_{\rm L})^2}\right) \begin{cases} \sigma(P_{\rm L}) = \sigma_{\rm Low} & \text{if } P_{\rm L} < P_{\rm 0} \\ \sigma(P_{\rm L}) = \sigma_{\rm High} & \text{if } P_{\rm L} > P_{\rm 0} \end{cases}$$

Fitting results \rightarrow width and velocity shift σ_{Low} , σ_{High} - ΔP_{L}

Asymmetry in P_L distributions

• ${}^{40}\text{Ar} + {}^{93}\text{Nb} \rightarrow {}^{A}\text{Z}$

•GH model is valid for σ_{High} . • $\sigma_{\text{Low}}/\sigma_{\text{High}} = 120 \sim 130 \%$.

Asymmetric P_L distributions

- Target dependence

⁴⁰Ar +

• 12**C**

Asymmetric PL distributions

- E dependence

⁴⁰Ar+⁹Be@95 MeV/u Notani et al.
M. Notani et al., PRC 76 (2007) 044605.

 Broadening effect is suppressed compared with lower energy reaction.

Asymmetric P_L distributions

84Kr +

- Target dependence

● 27**A**

Asymmetry in P_L distributions

- Ar and Kr beam

• $^{40}Ar + ^{12}C$

• ${}^{40}\text{Ar} + {}^{93}\text{Nb} \rightarrow {}^{A}\text{Z}$

- GH formulation is valid for σ_{High} .
- σ_o obtained from σ_{High} is ~ 110 MeV/c.

• ${}^{40}\text{Ar} + {}^{93}\text{Nb} \rightarrow {}^{A}\text{Z}$

- GH formulation is valid for σ_{High} .
- σ_o obtained from σ_{High} is ~ 110 MeV/c.

•
84
Kr+ 12 C \rightarrow 43 Ca

- GH formulation is valid only for heavy PLFs.
- σ_o is slightly larger than that for Ar-beam.

- Target dependence

- Small target dependence
- $\sigma_0(Kr)$ is larger than $\sigma_0(Ar)$.

- E dependence

Ar-beam

• σ_0 is constant at $E = 90 \sim 1000 \text{ MeV/u}$.

- E dependence

Ar-beam 160 140 120 α⁰ (MeV/c) 00 00 00 00 ¥ H 60 40 **x** Viyogi-79 ▲ Caamano-04 Mocko-06 20 Notani-07 Present 0 678 678 2 100 1000 E (MeV/u)

• σ_0 is constant at $E = 90 \sim 1000 \text{ MeV/u}$.

Kr-beam

- σ_0 decreases at $E = 40 \sim 500$ MeV/u.
- Recent results are larger than previous ones.

- E dependence

Ar-beam 160 140 120 σ₀ (MeV/c) 09 09 09 Φ Δ ¥ H 60 40 **x** Viyogi-79 ▲ Caamano-04 Mocko-06 20 Notani-07 Present 0 678 678 2 100 1000 E (MeV/u)

• σ_0 is constant at $E = 90 \sim 1000 \text{ MeV/u}$.

Kr-beam

- σ_0 decreases at $E = 40 \sim 500$ MeV/u.
- Recent results are larger than previous ones.

Parametrization of σ_0

- Based on observed systematics

Formulation proposed by Tripathi

$$\sigma_{0,\text{exp.}} = (1 + \frac{E_{\text{C}}}{4T_{\text{lab.}}})(70 + \frac{2}{3}A_{\text{P}}) \text{ MeV/c}$$

 $E_{\text{C}} = \frac{1.44Z_{\text{P}}Z_{\text{T}}}{r_{\text{P}} + r_{\text{T}}}, r_{\text{I}} = \sqrt{\frac{5}{3}}(r_{\text{I}})_{\text{rms}}$
 $T_{\text{lab.}}$: Beam E in MeV/u

<i>Tripathi et al.</i> , Phys. Rev. C 49 (1994) 2237.			
¹² C, ¹⁶ O	(1, 2 GeV/u)	: Greiner	@1975
¹³⁹ La	(1.2 GeV/u)	: Brady	@1988
⁴⁰ Ar	(213 MeV/u)	: Viyogi	@1979
¹⁹⁷ Au	(1 GeV/u)	: Dreute	@1991

Parametrization of σ_0

С

- Based on observed systematics

Formulation proposed by Tripathi

$$\sigma_{0,\text{exp.}} = (1 + \frac{E_{\text{C}}}{4T_{\text{lab.}}})(70 + \frac{2}{3}A_{\text{P}}) \quad \text{MeV/}$$
$$E_{\text{C}} = \frac{1.44Z_{\text{P}}Z_{\text{T}}}{r_{\text{P}} + r_{\text{T}}}, r_{\text{I}} = \sqrt{\frac{5}{3}}(r_{\text{I}})_{\text{rms}}$$
$$T_{\text{lab.}} : \text{ Beam E in MeV/u}$$

Tripathi et al., Phys. Rev. C 49 (1994) 2237. ¹²C, ¹⁶O (1, 2 GeV/u) : Greiner @1975 (1.2 GeV/u) ¹³⁹La : Brady @1988 (213 MeV/u) ⁴⁰Ar : Viyogi @1979 ¹⁹⁷Au (1 GeV/u) @1991 : Dreute

Target mass

Parametrization of σ_0

- Energy dependence

•Ar

• ${}^{40}\text{Ar} + {}^{93}\text{Nb} \rightarrow {}^{20}\text{Ne}$

• ${}^{40}\text{Ar} + {}^{93}\text{Nb} \rightarrow {}^{20}\text{Ne}$

- In case of Ar-beam

400 300 $\Delta P_{\rm L}$ (MeV/c) 200 100 0 Ar+Al -100 ± 40 10 20 30 0 A_{F}

 $^{40}Ar + ^{27}AI \rightarrow ^{A}Z$

- In case of Ar-beam

 $^{40}Ar + ^{27}AI \rightarrow ^{A}Z$

- $-\Delta P_{\rm L}$ distribution shows parabolic shape and become its maximum 300 MeV/c at $A_{\rm F} \sim 25$.
- Morrissey/Kaufman formulation is probable for heavier PLFs.

- Kr-beam

- $-\Delta P_{\rm L}$ distribution shows parabolic shape and become its maximum 700 MeV/c at $A_{\rm F} \sim 50$.
- Morrissey/Kaufman formulation is probable for heavier PLFs.

Acceleration effect

- at E = 90 MeV/u

 ${}^{40}\text{Ar}+{}^{9}\text{Be} \rightarrow {}^{9}\text{Be}$

Acceleration effect

- Tool to investigate EOS

²⁰⁸Pb (0.5, 1.0 GeV/u) + Ti

Participant blast pushes spectator.

P_T distribution

P_T distribution

1) Contamination of another process

2) Orbital deflection with heavy target

Dispersion would depend on *P*_L.

Off-centered P_{T} dist.

Meas. of P_T distribution

- as a function of $P_{\rm L}$

Dispersion (σ_T) observed at each P_L .

Meas. of P_T distribution

- as a function of $P_{\rm L}$

Dispersion (σ_T) observed at each P_L .

- ⁴⁰Ar+⁹Be@95 MeV/u

 σ_T decrease monotonously.

- ⁸⁴Kr+¹²C@290 MeV/u

1. $\sigma_T \sim const.$

2. $\sigma_T < \sigma_L$

- Analysis by linear function

 σ_T decrease monotonously.

Fitting function : $\sigma_T = k_0 + k_1 \Delta P$

- Analysis by linear function

 σ_T decrease monotonously.

Fitting function : $\sigma_T = k_0 + k_1 \Delta P$

Dispersion of P_T at P₀

- ⁴⁰Ar beam

In case of Ar beam with light targets,

1) P_T distribution is well reproduced only by GH formulation. 2) $\sigma_T \sim \sigma_{High}$
Dispersion of P_T at P₀

- ⁸⁴Kr beam
 - ⁸⁴Kr+¹²C@290 MeV/u

⁴⁰Ar+²⁷Al@290 MeV/u

In case of Kr beam with light targets, $P_{\rm T}$ distribution is narrower than $P_{\rm L}$ distribution.

In case of heavier target

• 40 Ar+Al, Nb, Tb, Au $\rightarrow {}^{39}$ Cl

In case of heavier target

• 40 Ar+Al, Nb, Tb, Au $\rightarrow {}^{39}$ Cl

• With heavy target, orbital-deflection effect is expected.

In case of heavier target

• 40 Ar+Al, Nb, Tb, Au $\rightarrow {}^{39}$ Cl

• With heavy target, orbital-deflection effect is expected.

Analysis of PT distribution

- Evaluation of deflection effect

• 84 Kr+Au $\rightarrow {}^{83}$ Br

Off-centered Gaussian functions

$$Y(P_{\rm T}) = \mathbf{A} \left\{ \exp(-\frac{(P_{\rm T} - \Delta P_{\rm T})^2}{2\sigma(P_{\rm T})^2}) + \exp(-\frac{(P_{\rm T} + \Delta P_{\rm T})^2}{2\sigma(P_{\rm T})^2}) \right\}$$

Let $\sigma(P_T) = \sigma_{GH}$, then fitting to provide A, $\Delta(P_T)$.

Analysis of PT distribution

- Evaluation of deflection effect

• 84 Kr+Au $\rightarrow {}^{83}$ Br

Off-centered Gaussian functions

$$Y(P_{\rm T}) = \mathbf{A} \left\{ \exp\left(-\frac{(P_{\rm T} - \Delta P_{\rm T})^2}{2\sigma(P_{\rm T})^2}\right) + \exp\left(-\frac{(P_{\rm T} + \Delta P_{\rm T})^2}{2\sigma(P_{\rm T})^2}\right) \right\}$$

Let $\sigma(P_T) = \sigma_{GH}$, then fitting to provide A, $\Delta(P_T)$.

 $\Delta \theta = 11.2 \text{ mrad}$ Grazing angle :14 mrad

Orbital-deflection effect

- Target dependence with Ar-beam

• ${}^{40}Ar + {}^{A}Z$

- The orbital-deflection effect grows with target mass.
- The target effect is remarkable for PLFs with $A_T > 20$.

Orbital-deflection effect - Ar, Kr + Au

• 40Ar+197Au • ${}^{84}Kr + {}^{197}Au$ 800 Au 400 Au -600 300 4PT (MeV/c) ΔP_T (MeV/c) 400 200 100 200 0 0 20 40 60 80 10 20 30 40 0 0 $A_{\rm F}$ A_{F}

- The orbital-deflection effect is similar for Arand Kr-beam.
- The large fluctuation is found at $A_T = 30 \sim 60$.

Orbital-deflection effect - Ar, Kr + Au

• ⁴⁰Ar+¹⁹⁷Au

- The orbital-deflection effect is similar for Arand Kr-beam.
- The large fluctuation is found at $A_{\rm T} = 30 \sim 60$.
- The fluctuation comes from isotopic drift.

• ⁸⁴Kr+¹⁹⁷Au

Participant blast effect in PT dist.?

For light/intermediate fragments

Oprod. of fragment

How to obtain σ_{Prod}

- Consideration of ang. acpt.

Prod. rate at 0 deg. in limited ang. acpt.

 \rightarrow Integration assuming reliable P_{T} distributions

How to obtain σ_{Prod}

- Consideration of ang. acpt.

Prod. rate at 0 deg. in limited ang. acpt.

 \rightarrow Integration assuming reliable P_{T} distributions

Spuriously underestimated σ_{Prod} would be provided.

How to obtain σ_{Prod}

- Integration along P_L

$\sigma_{\text{Prod.}}$ at E = 90 MeV/u

- ⁴⁰Ar + ⁹Be

M. Notani et al., PRC 76 (2007) 044605.

$\sigma_{\text{Prod.}}$ at E = 90 MeV/u

- ⁴⁰Ar + ⁹Be

M. Notani et al., PRC 76 (2007) 044605.

$\sigma_{Prod.} at E = 290 MeV/u$ - ⁴⁰Ar (290 MeV/u) + ¹²C

$\sigma_{Prod.} at E = 290 MeV/u$ - ⁴⁰Ar (290 MeV/u) + ¹²C

Energy dependence - ⁴⁰Ar (290 MeV/u) + ⁹Be, ¹²C

90 MeV/u : *M. Notani et al.*, PRC 76 (2007) 044605.
290 MeV/u : Our results
1000 MeV/u : *A. Ozawa et al.*, NP A 673 (2000) 375.

Normalized by EPAX2

- ⁴⁰Ar (290 MeV/u) + ⁹Be, ¹²C

90 MeV/u : *M. Notani et al.*, PRC 76 (2007) 044605.
290 MeV/u : Our results
1000 MeV/u : *A. Ozawa et al.*, NP A 673 (2000) 375.

Normalized by EPAX2

Contribution of nucl. structure

- Paring, Shell effect

Contribution of nucl. structure

- Paring, Shell effect

σ_{Prod}. with Kr-beam

Measured and analysis in progress

Modification of EPAX

- ⁸⁶Kr (64 MeV/u) + ⁹Be, ¹⁸¹Ta M. Mocho et al., PRC 76 (2007) 014609.

Mass yield

Optimization of EPAX

Modification of EPAX

- ⁸⁶Kr (64 MeV/u) + ⁹Be, ¹⁸¹Ta M. Mocho et al., PRC 76 (2007) 014609.

Mass yield

Optimization of EPAX

 $P_{\rm T}$ distribution is assumed to be a simple Gaussian.

$$\sigma_{\perp}^{2} = \sigma_{0}^{2} \frac{A(A_{P} - A)}{A_{P} - 1} + \sigma_{D}^{2} \frac{A(A - 1)}{A_{P}(A_{P} - 1)}$$

If the orbital deflection is considered, ...

Conclusions

At E = 90, 290 MeV/u

• PL distribution

Lower side : contribution of other reaction processes Higher side: well reproduced by Goldhaber formulation.

• P_{T} distribution

@95 MeV/u : contribution of other reaction processes
@290 MeV/u

Light targets : No additional dispersion Heavy targets: Orbital deflection effect

Production cross sections

Contribution of nuclear structure

Careful consideration to PT distribution

Development of formulation/HI transport code

Thanks to

RIKEN: r280n collaboration

I. Tanihata, A. Ozawa, M. Notani, K. Yoshida, K. Morimoto, T. Onishi, T. Yamaguchi, A. Yoshida, Y.X. Watanabe, L. Zhong, and Y. Nojiri

NIRS: P078, P178 Collaboration M. Kanazawa, A. Kitagawa, S. Sato, and M. Suda