Orbital dispersion and deflection of fragmentation
products at 290 MeV/u
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Observed deflection is consistent with that corresponds to
classically calculated grazing angle : 6.

Ar+Au: 6 ~ 16 mrad — Py~ 500 MeV/c

Kr+Au : 0 ~ 14 mrad — P; ~ 920 MeV/c
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The result suggests contribution of isospin.




