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価数とともに急激に増加

表面付近でエネルギーを
一気に付与
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Figure 3. (a) STM image of Si(111)-(7 × 7) with an impact site of an I50+ ion at 150 keV kinetic energy. (b) Line profile along the crater in
(a). (c) Area of the crater on Si(111) induced by Iq+ ions as a function of the charge state q (courtesy of Tona) [53].

the assumption that a fast relaxation of the electronic excitation
which, in metals, is of the order of less than 100 fs will inhibit
a phase transformation.

Si(111). A different behavior was observed on Si surfaces
irradiated with HCI from the Tokyo EBIT. Tona et al also used
an in situ STM to observe the modifications on Si(111)-(7× 7)
induced by highly charged Iq+ ions with charge states q of 30,
40 and 50 with atomic resolution [53–55]. At kinetic energies
of 3 keV × q the Iq+ ions produce crater-like structures with
a diameter of 1.5–3 nm. In figure 3 a such a crater produced
by the highest charged ion I50+ is shown. Around the hole
in the center, which reaches a depth of 0.35 nm (as seen in
figure 3(b)), brighter sites are observed in STM. From the
crater size it was estimated that at least 50 Si atoms were
removed by an I50+ ion. Figure 3(c) shows the dependence
of the crater area with the charge state of the Iq+ ions. A strong
increase with the potential energy is evident.

Earlier, irradiation of clean Si(100) with highly charged
Xeq+ ions (with q up to 44) were also reported to produce
craters with a diameter of 15 nm at the highest charge
state [56]. The potential sputtering yield measured on a catcher
foil was 100 Si atoms for this charge state. In addition, the
authors measured the photoluminescence from the irradiated
surface and found additional peaks at ∼2 eV which could be
assigned to excitons localized in the individual impact sites of
the HCI.

3.3. Insulators

On insulators the electronic excitation induced by HCI is
strongly confined. Therefore, permanent modifications are
expected resulting from HCI impact on these surfaces.

Oxides. The surfaces of different oxides have been
investigated by AFM and STM after the irradiation with HCI,

among them Al2O3, SiO2 and TiO2. The structures on Al2O3

produced by 500 eV Ar7+ were a few nm high and up to several
tens of nm in diameter [57]. However, the efficiency of the
formation of these structures was estimated to be only 1/5000
and no systematic study of the size dependence on the potential
energy has been done so far. Similar results were obtained
on SiO2. Another oxide which has been studied recently
after irradiation with HCI is TiO2 [58]. On the atomically
flat TiO2(110) surface two types of structures were observed
after the irradiation with I51+ at 150 keV: hillock-like and
‘caldera’-like structures. The number of structures agreed with
the applied ion fluence. The crater of the caldera structures
was found to be at least 1.5 nm deep, corresponding to several
atomic layers. The height of the hillocks and of the rims around
the crater was determined to be around 1 nm and the diameter
about 10 nm at the highest charge state applied.

CaF2. CaF2 is an ionic crystal and a wide bandgap insulator.
The best cleavage plane is the (111) which has therefore been
used for experiments with HCIs. The surface, cleaved in air
and then transferred to the UHV chamber, exhibits atomically
flat terraces larger than 1 µm width separated by mono-atomic
steps. On these fluorine terminated terraces modifications
induced by HCI can easily be detected with c-AFM. Impacts
of HCI on the CaF2 surface produces hillocks with a typical
height of ∼1 nm and a diameter of 20–90 nm (see figure 4(a)),
depending strongly on the potential energy of the ions [59].

A remarkable observation on the formation of these
hillocks on CaF2 is a sharp, well-defined threshold in the
potential energy of the HCI. Systematic studies of the hillock
formation on CaF2 with 10q × keV Xeq+ (q = 22–48) and
Arq+ (q = 11–18) revealed a potential energy threshold of
14 keV for hillock formation [59] which shifted to 12 keV for
very slow (150q ×eV) HCI impact energies [60]. For potential
energies smaller than the threshold no structures are found after
irradiation. In figure 4(b) the hillock volume is plotted as a
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Figure 3. (a) STM image of Si(111)-(7 × 7) with an impact site of an I50+ ion at 150 keV kinetic energy. (b) Line profile along the crater in
(a). (c) Area of the crater on Si(111) induced by Iq+ ions as a function of the charge state q (courtesy of Tona) [53].
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Figure 3. (a) STM image of Si(111)-(7 × 7) with an impact site of an I50+ ion at 150 keV kinetic energy. (b) Line profile along the crater in
(a). (c) Area of the crater on Si(111) induced by Iq+ ions as a function of the charge state q (courtesy of Tona) [53].
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a phase transformation.
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Figure 3. (a) STM image of Si(111)-(7 × 7) with an impact site of an I50+ ion at 150 keV kinetic energy. (b) Line profile along the crater in
(a). (c) Area of the crater on Si(111) induced by Iq+ ions as a function of the charge state q (courtesy of Tona) [53].
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Figure 3. (a) STM image of Si(111)-(7 × 7) with an impact site of an I50+ ion at 150 keV kinetic energy. (b) Line profile along the crater in
(a). (c) Area of the crater on Si(111) induced by Iq+ ions as a function of the charge state q (courtesy of Tona) [53].
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スパッタリング率 : S ＝ (B)(A)
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スパッタリング加工
多価重イオンビーム照射装置

標的材料 Ag (99.98%, Co)
サイズ (mm) 10 x 10 x 0.1
製法 圧延
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質量測定
セミミクロ分析天秤：AUW-120D (島津)

項目

温度 (℃) 20±2

湿度 (%RH) 45~60

測定精度(mg) ± 0.01

σ = ±0.018 mg
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Sの測定結果



Sの測定結果

30 keV 400 keV 600 keV 900 keV

エネルギーの違い→補正が必要
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Sのエネルギー依存性

random

S(1,E )SRIM
S(1,E )Obs.

= 0.73

Ar(1価)によるAgのスパッタリング率

S(q=1, E)

S(1,E )SRIM × 1
0.73



Sの価数依存性

１価の場合に対する相対値



Epot.を横軸にすると



結論

Agのスパッタリング率がArイオン
の価数とともに増加傾向



結論

Agのスパッタリング率がArイオン
の価数とともに増加傾向

しかし、測定の不確定性が大きい
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測定精度の向上
　質量減少量の測定精度
　　←より多い照射量



改善すべき点
測定精度の向上
　質量減少量の測定精度
　　←より多い照射量

エネルギー依存性の効果の排除
　　←価数によらずエネルギーを一定に




