Systematic investigation on momentum distributions of projectilelike fragments at E/A = 290 MeV

<u>S. Momota (Kochi Univ. of Tech.)</u> M. Kanazawa, A. Kitagawa, S. Sato (NIRS)

Itnl. Conf. on Nuclear Data for Science and Technology(ND2010) Jeju, South Korea (2010.04.29)

Motivation Systematic measurements of momentum distribution of projectile-like fragments (PLFs)

Analysis

provide physical quantitiesCenter/width of distributionProd. cross-section

Contribute

Nuclear physics

- Reaction mechanism
- Nuclear structure effect
 - ex. pairing/shell effect

Projectile fragmentation process • $E \ge 100 \text{ MeV/u}$

Projectile fragmentation process • $E \ge 100 \text{ MeV/u}$

- The shift and width of momentum distribution are small.
- Well defined velocity -> can be used as secondary beam.

P_L distributions

Width : σ(P//)

Fermi momentum of removed nucleons

A.S. Goldhaber, Phys. Lett. B 53 (1974) 244.

$$\sigma_{\rm GH} = \sigma_0 \sqrt{\frac{A_{\rm F}(A_{\rm P} - A_{\rm F})}{A_{\rm P} - 1}}, \quad \sigma_0 \sim 100 \,[{\rm MeV/c}]$$

³⁶Ar(1.05 GeV/u) + Be

$\sigma_0 = 98.2 \pm 0.2 \text{ MeV/c}$

M. Caamano et al, Nucl. Phys. A 733 (2004) 187.

P_L distributions

• Width : $\sigma(P_{//})$

Fermi momentum of removed nucleons

$$\sigma_{\rm GH} = \sigma_0 \sqrt{\frac{A_{\rm F}(A_{\rm P} - A_{\rm F})}{A_{\rm P} - 1}}, \quad \sigma_0 \sim 100 \,[{\rm MeV/c}]$$

³⁶Ar(1.05 GeV/u) + Be

 $\sigma_0 = 98.2 \pm 0.2 \text{ MeV/c}$ M. Caamano et al, Nucl. Phys. A 733 (2004) 187. ⁴⁰Ar(90MeV/u) + Ar

M. Notani et al., PR C 76 (2007) 044605.

P_L distributions

• Width : $\sigma(P_{//})$

Fermi momentum of removed nucleons

A.S. Goldhaber, Phys. Lett. B 53 (1974) 244.

$$\sigma_{\rm GH} = \sigma_0 \sqrt{\frac{A_{\rm F}(A_{\rm P} - A_{\rm F})}{A_{\rm P} - 1}}, \quad \sigma_0 \sim 100 \,[{\rm MeV/c}]$$

³⁶Ar(1.05 GeV/u) + Be

⁴⁰Ar(90MeV/u) + Ar

Not so many measurements at intermediate energies.

 $\sigma_0 = 98.2 \pm 0.2 \text{ MeV/c}$

M. Caamano et al, Nucl. Phys. A 733 (2004) 187.

M. Notani et al., PR C 76 (2007) 044605.

S. Momota ND2010, Jeju, South Korea (2010.04.29)

• Width : $\sigma(P_{\perp})$

- At high energy : E > 1 GeV/u Isotropic, $\sigma(P_{\perp}) \sim \sigma(P_{\prime\prime})$
- At lower energy : E < 100 MeV/uanisotropic, $\sigma(P_{\perp}) > \sigma(P_{//})$

• Width : $\sigma(P_{\perp})$

• At high energy : E > 1 GeV/u Isotropic, $\sigma(P_{\perp}) \sim \sigma(P_{//})$

• At lower energy : E < 100 MeV/uanisotropic, $\sigma(P_{\perp}) > \sigma(P_{//})$

Orbital dispersion

K. Van Bibber et al., Phys. Rev. Lett. 43 (1979) 840.

$$\sigma(P_{\perp}) = \sqrt{\sigma(P_{//})^2 + \frac{A_F(A_F - 1)}{A_P(A_P - 1)}\sigma_{D0}^2}$$
$$\sigma_0 = 195[\text{MeV/c}]$$

¹⁶O(~100 MeV/u) + Al, Au

• Width : $\sigma(P_{\perp})$

• At high energy : E > 1 GeV/u Isotropic, $\sigma(P_{\perp}) \sim \sigma(P_{//})$

• At lower energy : E < 100 MeV/u

anisotropic, $\sigma(P_{\perp}) > \sigma(P_{\parallel})$

Orbital dispersion

K. Van Bibber et al., Phys. Rev. Lett. 43 (1979) 840.

 $\sigma(P_{\perp}) = \sigma(P_{\perp})^2 + \frac{A_F(A_F - 1)}{\sigma^2}$

¹⁶O(~100 MeV/u) + Al, Au

Few systematic measurements with HI beam !!

S. Momota ND2010, Jeju, South Korea (2010.04.29)

HIMAC facility at NIRS

Synchrotron dedicated to cancer therapy

S. Momota ND2010, Jeju, South Korea (2010.04.29)

HIMAC facility at NIRS

Synchrotron dedicated to cancer therapy

HIMAC facility at NIRS

Synchrotron dedicated to cancer therapy

S. Momota ND2010, Jeju, South Korea (2010.04.29)

■ B4Kr + ${}^{12}C \rightarrow {}^{A}Z + X : B\rho = 82.5\%$

• ${}^{84}Kr + {}^{12}C \rightarrow {}^{43}Ca$

Analysis of P_L distributions

• ${}^{84}\text{Kr} + {}^{12}\text{C} \rightarrow {}^{43}\text{Ca}$

Analysis of P_L distributions

Y(

$$P_{\rm L}) = \mathbf{A} \exp\left(-\frac{(P_{\rm L} - P_{\rm 0})^2}{2\sigma(P_{\rm L})^2}\right) \begin{cases} \sigma(P_{\rm L}) = \sigma_{\rm Low} & \text{if } P_{\rm L} < P_{\rm 0} \\ \sigma(P_{\rm L}) = \sigma_{\rm High} & \text{if } P_{\rm L} > P_{\rm 0} \end{cases}$$

S. Momota ND2010, Jeju, South Korea (2010.04.29)

Analysis of P_L distributions

S. Momota ND2010, Jeju, South Korea (2010.04.29)

Analysis of P_L distributions

Width of P_L distributions ${}^{40}Ar+{}^{93}Nb \rightarrow {}^{A}Z$

- $\sigma_{Low}/\sigma_{High}$ is about 20 %.
- GH formulation is valid for σ_{High} .
- σ_o obtained from σ_{High} is ~ 110 MeV/c.

Width of P_L distributions

- GH formulation is valid for σ_{High} .
- σ_o obtained from σ_{High} is ~ 110 MeV/c.

• ⁴⁰Ar+⁹Be@95 MeV/u Notani et al.

 Broadening effect is suppressed compared with lower energy reaction.

Width of P_L distributions $^{40}Ar+^{93}Nb \rightarrow ^{A}Z$ • $^{84}Kr+^{12}C \rightarrow ^{43}C$

- $\sigma_{Low}/\sigma_{High}$ is about 20 %.
- GH formulation is valid for σ_{High} .
- σ_o obtained from σ_{High} is ~ 110 MeV/c.

- $\sigma_{Low}/\sigma_{High}$ is about 20 %.
- GH formulation is valid only for heavy PLFs.
- σ_0 is slightly larger than that for Ar-beam.

Reduced width : σ₀ Target dependence

- σ_0 is independent on target nuclei.
- $\sigma_0(Kr)$ is larger than $\sigma_0(Ar)$.

Reduced width : σ₀• Energy dependenceAr-beam

 σ₀ is constant at *E* = 100 ~ 1000 MeV/u.

Reduced width : σ₀ • Energy dependence Ar-beam Kr-beam

 σ₀ is constant at *E* = 100 ~ 1000 MeV/u.

• σ_0 is energy dependent for at $E = 40 \sim 500$ MeV/u.

S. Momota ND2010, Jeju, South Korea (2010.04.29)

Deceleration effect : Ar-beam

$^{40}Ar + ^{27}AI \rightarrow ^{A}Z$

Deceleration effect : Ar-beam

- $-\Delta P_{\rm L}$ distribution shows parabolic shape and become its maximum 300 MeV/c at $A_{\rm F} \sim 25$.
- Morrissey/Kaufman formulation is probable for heavier PLFs.

Deceleration effect : Kr-beam

- $-\Delta P_{\rm L}$ distribution shows parabolic shape and become its maximum 700 MeV/c at $A_{\rm F} \sim 50$.
- Morrissey/Kaufman formulation is probable for heavier PLFs.

Observed P_T distribution

 In case of light target, P_T distribution is well reproduced by previously proposed formulation.

Observed P_T distribution

• With heavy target, orbital-deflection effect is expected.

Observed P_T distribution

observed !! Deflection effect grows with *P*_T.

 In case of light target, P_T distribution is well reproduced by previously proposed formulation.

• With heavy target, orbital-deflection effect is expected.

Analysis of P_T distribution

• 84 Kr+Au $\rightarrow {}^{83}$ Br

Analysis of P_T distribution

• ⁸⁴Kr+Au → ⁸³Br

Analysis of P_T distribution

• ⁸⁴Kr+Au → ⁸³Br

Width of P_T distributions

PFLs produced from ⁸⁴Kr + Al

- P_{T} distribution is successfully analyzed with $\Delta P_{T} = 0$.
- For light target, σ_T can be reproduced by $\sigma_T^2 = \sigma_{GH}^2 + \sigma_{Bibber}^2$.

Width of P_T distributions

PFLs produced from ⁸⁴Kr + Al

- P_{T} distribution is successfully analyzed with $\Delta P_{T} = 0$.
- For light target, σ_T can be reproduced by $\sigma_T^2 = \sigma_{GH}^2 + \sigma_{Bibber}^2$.
- $\sigma_T^2 = \sigma_{GH^2} + \sigma_{Bibber^2}$ is assumed to be valid for heavier target.

Orbital-deflection effect

PFLs produced from ⁴⁰Ar-beam

- The orbital-deflection effect grows with target mass.
- The target effect is remarkable for PLFs with $A_T > 20$.

Orbital-deflection effect

• PFLs from Kr+Au

PFLs from Ar+Au

- The orbital-deflection effect is similar for Arand Kr-beam.
- The large fluctuation is found at $A_{\rm T} = 30 \sim 60$.

Orbital-deflection effect

• PFLs from Kr+Au

PFLs from Ar+Au

- The orbital-deflection effect is similar for Arand Kr-beam.
- The large fluctuation is found at $A_{\rm T} = 30 \sim 60$.
- The fluctuation comes from isotopic drift.

Be careful, when you use PLF

- produced from heavy target
- in small angle acceptance at forward angle

you might use the minor part in distribution.

Conclusions

- P_L distribution
 - The broadening effect at lower momentum side was observed.
 - Target/Energy dependence of reduced momentum width σ_0 was observed.
 - The systematics of the deceleration effect was observed.
- P_T distribution
 - The orbital-deflection effect (ΔP_{T}) was extracted.
 - $\Delta P_{\rm T}$ grows with target mass for heavy PLFs.
 - The isotopic drift causes the large fluctuation found in $\Delta P_{\rm T}$ -systematics. More consideration is needed.
- Based on the present results, production cross section should be calculated.

