3rd Joint Meeting of the Nuclear Physics Divisions of the APS and JPS Oct. 14 2009, Waikoloa, Hawaii

Shift and width of momentum distribution of projectile-like fragments produced at 290MeV/u

Sadao MOMOTA Kochi University of Techlonogy

Mitsutaka KANAZAWA, Atsushi KITAGAWA, Shinji SATO National Institute of Radiological Sciences

Projectile fragmentation process

- Powerful process to produce RNB
 - → Structure/reaction of unstable nuclei
 - →Tools/probes applied to various fields

Momentum distribution

Interaction acting in production process Production cross-sections ($\sigma_{Prod.}$) of PLFs

*P*_L distribution of PLFS Exp. / Simple model / Parameterization

• Width : σ_L

+Fermi momentum in nucleus
+Sequential evaporation
+Universal parametrization
+Analyzed by asymmetric func.

Goldhaber(1974)

Morrissey(1989)

Tarasov(2004)

Notani(2004), Mocko(2007)

• Shift (deceleration) : $-\Delta P_L$

+Linear dep. on σ_{L} ΔA + E_{B} of removed nucleons + N_{Pair} of nucleons

Greiner(1975) Kaufman(1982), Morrissey(1989) Borrel(1983)

Notani(2004)

*P*_T distribution of PLFs Exp. / Simple model / Parameterization

- Width : $\sigma_T^2 = \sigma_L^2 + \dots$
 - + Orbital deflection due to interaction with target Bibber(1979)
 - + Coulomb final state interaction Wong(1982)

- Shift (deflection) : ΔP_{L}
 - + Empirical consideration of nuclear and Coulomb force Giacomelli(2004)
 - + Observation with Ar + Nb, Tb, Au @ 290MeV/u Momota(2007)

Object of this talk

- Systematic measurements of P distributions of PLFs at 290 MeV/u
 - 1. *P*_L: asymmetric Gaussian functions
 - 2. P_T : off-centered Gaussian functions
 - 3. Systematics

Reliable $\sigma_{Prod.}$ of PLFs Simulation of heavy ion transport phenomena

Experimental setup

Reaction/Meas. parameters

Beam : ⁴⁰Ar, ⁸⁴Kr 290 MeV/u Target : ¹²C, ²⁷Al, ⁹³Nb, ¹⁵⁹Tb, ¹⁹⁷Au 1.0 0.8 0.5 0.5 0.5 0.5 0.333 mm

Acceptance of ISOL :

 $\Delta P/P0 = 1.0\% \text{ (Ar)} / 0.5\% \text{ (Kr)}$ $\Delta \theta_x = \Delta \theta_y = 26 \text{ mrad} \qquad P_{\text{L}} \text{ dist.}$

8 mrad $P_{\rm T}$ dist.

P_L distribution

Analyzed by asymmetric Gaussian functions

Width of P_L distribution : Ar

$^{40}Ar + Nb \rightarrow ^{A}Z + X$

Width of PL distribution : Kr

 84 Kr + C \rightarrow A Z + X

Reduced momentum width

Asymmetric width of PL

 $\sigma_{Low}/\sigma_{High}$: Universal parameter at 290 MeV/u

Shift of PL distribution : Ar

Shift of PL distribution : Kr

P_T distribution : Ar

 40 Ar+Target $\rightarrow ^{39}$ Cl + X

1.6 Prod. Rate (Arb. Unit) 1.4 Au Prod. Rate (Arb. Unit) 8'0 (Arb. Unit) 9'0 (Arb. 0'1) 9'0 (Arb. 0'1) Tb 0.6 ٧b GH 0.2 GH+Bibber 800 400 1200 0.0 1600 0 800 400 1200 1600 0 P_T (MeV/c) P_T (MeV/c)

> Off-centered Gaussian functions $f(P_{T}) = k \left\{ \exp(-\frac{(P_{T} - \Delta P_{T})^{2}}{2\sigma_{T}^{2}}) + \exp(-\frac{(P_{T} + \Delta P_{T})^{2}}{2\sigma_{T}^{2}}) \right\}$ $\sigma_{T} \text{ is fixed.}$

Function fitting

Width of P_T distribution : Ar

Width of P_T distribution : Kr

Summary

• *P*_L distribution

Contribution of multiple-step processes $\sigma_{Low} / \sigma_{High} = 1.2 \sim 1.3$ less than E = 90 MeV/u Reduced momentum width (100 ~ 1000 GeV/u) decreases with *E* for Kr-beam Momentum shift maximum at $A_F \sim 25$ (Ar), 50 (Kr)

• *P*_T distribution

Deflection of orbit caused by Coulomb force Systematics?

Reliable $\sigma_{Prod.}$ produced from heavy target