Momentum Distribution of Projectile-like Fragments at E = 290 MeV/u S.Momota¹, M.Kanazawa², A.Kitagawa², S.Sato², and Y.Nojiri¹ ¹Kochi University of Technology, Tosayamada, Kami, Kochi, Japan and ²National Inst. of Radiological Sciences, Anagawa, Inage, Chiba, Japan The momentum distributions of projectile-like fragments (PLFs) were measured for various reaction systems at E=290 MeV/u by using ISOL facility at HIMAC-NIRS. The momentum distributions not only reflect the production mechanism of PLFs, but also give important information to apply PLFs as radioactive nuclear beams. The peak and width of observed longitudinal momentum (P_L) distributions were calculated. The systematic peak shift is found in P_L distribution. The peak shift can be compared with that observed at E~100 MeV/u [1]. The width of P_L distribution (σ_L) produced from 40 Ar beam is constant for wide range of fragments and targets (C, Al, Nb, Tb, Au), and consistent with Goldhaber's model [2]. σ_0 calculated from σ_L is consistent with the energy dependence shown in [3]. In contrast, σ_L of PLFs produced from 84 Kr beam depends on fragment mass (A_F) , and significantly larger than that of PLFs produced from Ar beam, as shown in Fig. 1. It is expected that different types of reaction mechanism might contribute to produce PLFs from heavier beam. The width of observed transverse momentum (P_T) distributions was also calculated. The width of P_T distributions (σ_T) , produced from 84 Kr beam, was shown as a function of A_F in Fig. 2. σ_T for Al target can be reproduced by σ_L based on the result from Ar beam well. The broadening of P_T distribution was observed for heavier (Nb) target with 84 Kr beam. The broadening effect in P_T distribution, which is promoted for heavier target, is consistent with the previous study [4]. By analyzing the broadening effect, the deflection of PLFs caused by Coulomb interaction with the target will be discussed. Fig. 2 $\sigma_{\rm T}$ as a function of $A_{\rm F}$ for PLFs from Kr beam. The solid line indicates $\sigma_{\rm L}$ calculated based on the results of Ar beam - [1] M. Notani et al., Phys. Rev. C76, 044605 (2007). - [2] A.S. Goldhaber, Phys. Lett. 53B, 306 (1974). - [3] M.J. Murphy and R.G. Stokstad, Phys. Rev. C28, 428 (1983). - [4] S. Momota et al., Eur. Phys. J SP 150, 317 (2007). _____