H19.09.22 日本物理学会 第62回年次大会 北海道大学札幌キャンパス

入射核破砕片の運動量分布の系統性

高知工科大学:百田佐多生,野尻洋一 放医研:金澤光隆,北川敦志,佐藤真二

破砕片の運動量分布 (生成断面積) ●破砕片生成過程のメカニズム ● 運動量分布 → 反応に関与する相互作用 ● 生成断面積 → 核構造効果 ● 核データ 二次ビーム強度の予測

照射効果の評価(Ex. がん治療)

破砕片の運動量分布:P//

*Goldhaber*模型 フェルミ運動量(P_F)に よる広がり

$$\sigma_{\rm GH} = \sigma_0 \sqrt{\frac{A_{\rm F}(A_{\rm P} - A_{\rm F})}{A_{\rm P} - 1}}$$

$$\bullet E_i \ge 1 \ GeV/u$$

$$\sigma_0 \sim \frac{P_F}{\sqrt{5}} \sim 112 \ (MeV/c)$$

$$\bullet E_i \sim 100 \ MeV/u$$

$$\sigma_0 \sim 95 \ (MeV/c)$$

破砕片の運動量分布:P」

 $E \geq 1 \ GeV/c : \sigma_{\perp} \sim \sigma_{//}$

中間エネルギー(~100 MeV/u)では?

破砕片の運動量分布:P」

$$\sigma_{\perp}^{2} = \sigma_{\rm GH}^{2} + \sigma_{\rm D}^{2} + \sigma_{\rm C}^{2} + \sigma_{\rm DxC}$$

● 標的核による軌道偏向の寄与

$$\sigma_{\rm D} = \sigma_{\rm D0} \sqrt{\frac{A_{\rm F}(A_{\rm F}-1)}{A_{\rm P}(A_{\rm P}-1)}}$$

• $E_i \sim 100 \text{ MeV/u}, {}^{16}O + Trg.$ Phys. Rev. Lett. 43 (1979) pp.840

$$\sigma_{\rm D0}\sim 200\,(MeV\,/\,c)$$

Coulomb final state interactionの寄与

$$\sigma_{\rm C} = C_0 \sqrt{(Z_{\rm P} - Z_{\rm F})(\frac{1}{3} + \frac{Z_{\rm P} - Z_{\rm F} - 1}{8})}$$

E_i ~ 100 MeV/u
¹⁶O or ⁴⁰Ar + Trg.
Phys. Rev. Lett. 43 (1979) pp.840

$$C_0^2 = 2702 \times Z_F \cdot \frac{A_F}{A_F + 1} \cdot A_P^{1/3}$$

運動量分布の測定

反応及び測定条件

Reaction	E_i (MeV/u)	$\sigma_E/E_{ heta}$ (%)	$\sigma_{ heta}/\Delta heta$ (%)
⁴⁰ Ar+ ⁹ Be	95	0.04	6.2
¹² C	290	0.03	8.0
²⁷ Al	290	0.02	10
⁹³ Nb	290	0.03	23
¹⁵⁹ Tb	290	0.03	26
¹⁹⁷ Au	290	0.04	35

Energy and angular straggling are calculated by LISE.

P//分布の解析

P//分布の解析

P//分布の解析

P//分布: σHigh→σ0

• ${}^{40}Ar (290MeV/u) + C, Al, Nb, Tb, Au$

P//分布: σHigh→σ0

• ${}^{40}Ar (290MeV/u) + C, Al, Nb, Tb, Au$

P//分布: σHigh→σ0

• ${}^{40}Ar (290MeV/u) + C, Al, Nb, Tb, Au$

⁴⁰Ar(90MeV/u)+Be M. Notani et al.*

*to be published in Phys. Rev. C

P//分布:σο

σ_0 の標的依存性

P//分布:σο

σ_0 の標的依存性

$onumber \sigma_0 \mathcal{O} E_i 依存性$

P//分布: σLow

• ${}^{40}Ar (290MeV/u) + C, Al, Nb, Tb, Au$

P//分布: σLow

• ${}^{40}Ar (290MeV/u) + C, Al, Nb, Tb, Au$

P」分布の解析

P_分布: σ_, 290MeV/u

 ${}^{40}Ar \left(\frac{290MeV/u}{+Al} \rightarrow {}^{Z}A\right)$

 $\sigma_0 = 107.3 \text{ MeV/c}$ $\sigma_{D0} = 195 \text{ MeV/c}$

P_⊥分布: σ_⊥, 95MeV/u

• ${}^{40}Ar (95MeV/u) + Be \rightarrow {}^{Z}A$

P_⊥分布: σ_⊥, 95MeV/u

 $^{40}Ar (95MeV/u) + Be \rightarrow ^{Z}A$

 σ_0 = 93.5 MeV/c σ_{D0} = 195 MeV/c

P_{\perp} 分布: Δ_{\perp}

• ${}^{40}Ar (290MeV/u) + Al, Nb, Tb, Au \rightarrow {}^{Z}A$

• $P// \rightarrow \sigma_{Low}, \sigma_{High}$

- $\sigma_{Low} / \sigma_{High} \sim 1.3$ at 290MeV/u
- σLow, σHigh いずれも標的依存性なし
- $\sigma_0 = 107.3 \text{ MeV/c}$: E_i とともに増加

• $P// \rightarrow \sigma_{Low}, \sigma_{High}$

- $\sigma_{Low} / \sigma_{High} \sim 1.3$ at 290MeV/u
- σLow, σHigh いずれも標的依存性なし
- σ₀ = 107.3 MeV/c: E_i とともに増加

• $\mathbf{P}_{\perp} \rightarrow \boldsymbol{\sigma}_{\perp}$

- Be(95MeV/u), Al(290MeV/u)標的では σ₁~σ// σ_D, σ_C の寄与が小さい
- クーロンカによる偏向→標的に依存
- Nb, Tb, Au標的でのσD, σcの寄与は?