2007.08.30 ICIS2007@Jeju, Korea Highly charged ion beam applied to lithography technique

Sadao Momota Kochi University of Technology

Contents

- Objective
- Principle of IBL
- Application of HCI beams to IBL
- HCI beam facility
- Experimental results
- Discussion
- Conclusion

Objective

 Design rule of LSI Integration of 2D pattern 130 nm 100 nm 70 nm 				
KrF (248 nm)	ArF (193 nm)	F2 (157 nm)		
	EUV	32 nm on T Selete-EUVA-C	OK anon	

MEMS

Micro Electro Mechanical System

- Optical device
- Mold
- Biochip
- Micro-machining tool

3-Axis Accelerometer

Analog Devices Co.

MEMS

Micro Electro Mechanical System

- Optical device
- Mold
- Biochip

Photonic crystal

Micro-machining tool
National Inst. for Material Science
<u>http://www.nims.go.jp/jpn/news/</u>
<u>nimsnow/Vol4/2004-03/05.html</u>

MEMS

Micro Electro Mechanical System

- Optical device
- Mold
- Biochip
- Micro-machining tool

Pattern transfer

10nm diam. & 60nm pitch S.Y. Chou et al. J. Vac. Sci. Technol., B15(1997)2897

MEMS

Micro Electro Mechanical System

- Optical device
- Mold
- Biochip
- Micro-machining tool

Micro inspection chip

Hitachi, Ltd.

MEMS

Micro Electro Mechanical System

- Optical device
- Mold
- Biochip
- Micro-machining tool

Diamond array tool

Morita Gr. (Toyama Univ.)

Feasibility of IBL to fabricate 3D structures

- Ion range controlled by beam energy
 - $E \propto V$
- Small lateral straggling
- High reactivity
 - Large energy deposition in materials

Goal of this research

Fabrication of 3D nano-scale structure Application of HCI to IBL technique

- Efficient fabrication
- Controllability/Enhancement of fabrication depth

compared with conventional IBL

Principle of IBL

Exposure process

Irradiation of ion beam

- Mask or FIB
- Irradiation effect
 - Implantation of impurities
 - Change in chemical structure / component Crystal ⇔ Amorphous

 $\mathsf{Polymer} \Leftrightarrow \mathsf{Monomer}$

Exposure process

Irradiation of ion beam

Mask or FIB

Irradiation effect

- Implantation of impurities
- Change in chemical structure / component Crystal ⇔ Amorphous

 $\mathsf{Polymer} \Leftrightarrow \mathsf{Monomer}$

Exposure process

Irradiation of ion beam

Mask or FIB

Irradiation effect

- Implantation of impurities
- Change in chemical structure / component Crystal ⇔ Amorphous

Polymer ⇔ Monomer

- Etching by chemicals
 - Wet / Dry
- Difference in etching rate caused by
 - Impurity
 - Change in chemical structure / component
- Fabricated structure
 - Concave : positive
 - Hillock : negative

- Etching by chemicals
 - Wet / Dry
- Difference in etching rate caused by
 - Impurity
 - Change in chemical structure / component
- Fabricated structure
 - Concave : positive
 - Hillock : negative

- Etching by chemicals
 - Wet / Dry
- Difference in etching rate caused by
 - Impurity
 - Change in chemical structure / component
- Fabricated structure
 - Concave : positive
 - Hillock : negative

- Etching by chemicals
 - Wet / Dry
- Difference in etching rate caused by
 - Impurity
 - Change in chemical structure / component
- Fabricated structure
 - Concave : positive
 - Hillock : negative

- Etching by chemicals
 - Wet / Dry
- Difference in etching rate caused by
 - Impurity
 - Change in chemical structure / component
- Fabricated structure
 - Concave : positive
 - Hillock : negative

Application of HCI beams to IBL

Why HCI beam?

Why HCI beam?

Availability of HCI sources
 ECRIS, EBIS, Laser IS

Why HCI beam?

- Availability of HCI sources
 - ECRIS, EBIS, Laser IS
- Expected advantages to use HCI compared with singly charged ion

Expected advantage to apply HCI beams

Expected advantage to apply HCI beams

Efficient fabrication

• High reactivity of HCI beams in materials

Expected advantage to apply HCI beams

- Efficient fabrication
 - High reactivity of HCI beams in materials
- Controllability/Enhancement of fabrication depth $\Leftarrow E \propto q V_{Acl.}$

compared with conventional lithography technique

Unique phenomena induced by HCI beams

- Enhancement of dE
- Pot. emission
- Hollow atom
- Local modification
- Coulomb explosion etc.

Unique phenomena induced by HCI

- Enhancement of dE
- Pot. emission
- Hollow atom
- Local modification
- Coulomb explosion etc.

Mat. Sci. Eng. B74 (2000) 40 T. Meguro et al.

Unique phenomena induced by HCI

- Enhancement of dE
- Pot. emission
- Hollow atom
- Local modification
- Coulomb explosion etc.

Creation of nano-diamonds

in HOPG

(a) Ar+ irradiation

(b) Ar8+ irradiation

n (c) Ar⁸⁺ irradiation with electron injection

Sp₂ -> Sp₃ Appl. Phys. Lett. 79 (2001) pp. 3866, T. Meguro et al.

IBL of self-assembled monolayers Xe⁴⁴⁺ from EBIT at NIST(11x10⁶ ions/s)

- Exposure : Xe⁴⁴⁺ (350keV)
 Ar^{*} (~0.1 eV)
- Development : Remove Au in irradiated region
- Measurement : Loss of reflectivity

P. Ratliff et al.Appl. Phys. Lett. 75 (1999) pp.590

IBL of self-assembled monolayers Xe⁴⁴⁺ from EBIT at NIST(11x10⁶ ions/s)

- Exposure : Xe⁴⁴⁺ (350keV) Ar* (~0.1 eV)
- Development : Remove Au in irradiated region
- Measurement : Loss of reflectivity

	E _{pot.} (keV)	Dose (ions/cm²)
Xe ⁴⁴⁺	51.3	1.3x10 ¹¹
Ar*	0.012	6.6x10 ¹⁵

L.P. Ratliff et al.Appl. Phys. Lett. 75 (1999) pp.590

IBL of self-assembled monolayers Xe⁴⁴⁺ from EBIT at NIST(11x10⁶ ions/s)

- Exposure : Xe⁴⁴⁺ (350keV) Ar* (~0.1 eV)
- Development : Remove Au in irradiated region
- Measurement : Loss of reflectivity

2D pattern

P. Ratliff et al.Appl. Phys. Lett. 75 (1999) pp.590

IBL of PMMA

Xe⁴⁴⁺ from EBIT at NIST(11x10⁶ ions/s)

- Exposure : Xe⁴⁴⁺ (210keV) on PMM^{*}
- Dev Ren Ren irrad
 method demonstrated here can be submicrometer
- Measurement : SEM, AFM

J.D. Gillaspy et al., J. Vac. Sci. Technol. B16 (1998) pp.3294
IBL of PMMA

Xe⁴⁴⁺ from EBIT at NIST(11x10⁶ ions/s)

- Exposure : Xe⁴⁴⁺ (210keV) on
 PMM^{*}
 Epot. Dose (kV) (ions/cm²)
- The method demonstrated here can be
 Dev extended deep into the submicrometer
 Ren range."
- Measurement : SEM, AFM

J.D. Gillaspy et al., J. Vac. Sci. Technol. B16 (1998) pp.3294

Goal of this research

Fabrication of 3D nano-scale structure

Efficient fabrication

- High reactivity of HCI beams with materials
- Controllability/Enhancement of fabrication depth
 - Controlled by V and q
 - Application of larger q

HCI beam facility

Production of HCI beams

10GHz-NANOGAN

- $P_{\rm RF} = 0 \sim 80 \, {\rm W}$
- $V_{\text{Ext.}} = 0 \sim 30 \text{ kV}$
- $V_{Acl.} = 0 \sim 100 \text{ kV}$
- Compact install
 ECRIS and acceleration system installed in *L*~1 m.

ICIS2003 : S. Momota et al., Rev. Sci. Instrum., 75(2004), pp.1497 - 1498

Separation of HCI beams

- Rigidity analysis
 - $\theta = \pi/4$ rad
 - $B\rho = 0 \sim 0.33 \text{ T} \cdot \text{m}$
- Ions
 - Ar¹⁺~Ar⁹⁺

Irradiation of HCI beams

- Stencil mask
 - Cu

On-line current monitor

- Collimator
- Secondary electron suppressor
- Current integration

Irradiation of HCI beams

- Stencil mask
 - Cu

On-line current monitor

- Collimator
- Secondary electron suppressor
- Current integration

Experimental results

IBL on SOG

Irradiation of Arq+

- $q = +1 \sim +9$
- 80~240 keV
- Cu-Mask (43×43 μm)
- Wet etching
 BHF (HF, NH₄F)
- Surface profile
 - Optical microscopy
 - Profilometer

http://www.dreebit.com/en/highly_charged_ions/data/

IBL on SOG

Irradiation of Arq+

- $q = +1 \sim +9$
- 80~240 keV
- Cu-Mask (43×43 µm)
- Wet etching
 - BHF (HF, NH₄F)
- Surface profile
 - Optical microscopy
 - Profilometer

IBL of SOG

Irradiation of Arq+

- $q = +1 \sim +9$
- 80~240 keV
- Cu-Mask (43×43 μm)
- Wet etching
 BHF (HF, NH₄F)
- Surface profile
 - Optical microscopy
 - Profilometer

Optical micrograph

IBL of SOG

Irradiation of Arq+

- *q* = +1~+9
- 80~240 keV
- Cu-Mask (43×43 μm
- Wet etching
 BHF (HF, NH₄F)
- Surface profile
 - Optical microscopy
 - Profilometer

IBL on Si

- Irradiation of Arq+
 - *q* = +1~9
 - $E = 40 \sim 540 \text{ keV}$
 - Cu-Mask (43×43 μm)
- Etching
 - 46mass% HF
- Surface profile
 - AFM

IBL on Si

Irradiation of Arq+

- *q* = +1~9
- $E = 40 \sim 540 \text{ keV}$
- Cu-Mask (43×43 μm)
- Etching
 - 46mass% HF
- Surface profile
 - AFM

Ar⁴⁺

Hillock structure

Protrusion of Si Fabrication of hillock structure

Protrusion of Si Fabrication of hillock structure

Ar⁴⁺, 1.5×10¹⁵ ions/cm²

Discussion

Modification of surface: SOG

Top surface : resistant layer for etching

Modification of surface: SOG

• Top surface : resistant layer for etching $1+ \Rightarrow 9+$

Energy deposition at surface

Promotion of sputtering/modification

Concave structure

Removal of resistant layer

Modification of surface: SOG

Energy deposition at surface

Promotion of sputtering/modification

Concave structure

Removal of resistant layer

Modification of surface: Si

Top surface : resistant layer for etching

Modification of surface: Si

Top surface : resistant layer for etching

Beam energy

Energy deposition at surface

Promotion of amorphousization

Hillock structure

Rise of etching rate

Because

Reduction of energy deposition at surface

Modification of inside: SOG

- Etching rate
 not depend on q
- Etching depth
 anomalously deeper than ion range
 increase with q
 - q dep. does not observed for Si.

Indirect irradiation effect

- Anomalously deep structural change
 - Secondary e-
 - Shock waves
 - Stress etc.

Remarkable for glasses

A. Deshkovskaya, Nucl. Instr. and Meth. in Phys. Res. B166-167 (2000) pp.511

HCI effect is material dependent.

Modification of mechanical properties

Modification of mechanical properties

Conclusion

HCI effect on IBL

- HCI beams reduces etching time.
 - Reduction of T₁
- HCI enhances fabrication depth.
 - Anomalously deep structural change (Material dependent)
 - HCI beams
- Fabrication depth can be controlled.
 - ±10nm
 - V and q

For deep fabrication

- Energy deposition promotes fabrication.
- More energy deposition at surface.
 - Co-irradiation of low energy IB
 - Irradiation of HCI beams

calculated by SRIM

Prospects

- Further development of IBL with HCI beams
 - Application of higher *E*_{pot}.
 - Fabrication of unique structure
- Further development of ion source
 - More intense / more focused HCI beams

Collaboration

Univ. of Toyam *N. Morita, N. Kawasegi* Etching, Measurements

Tokyo Univ. of Sci. J. Taniguchi, I. Miyamoto IBL process, Measurements

Kochi Univ. of Tech. Y. Nojiri, S. Momota Irradiation of HCI beam

Collaboration

Univ. of Toyam *N. Morita, N. Kawasegi* Etching, Measurements

Tokyo Univ. of Sci. J. Taniguchi, I. Miyamoto IBL process, Measurements

Kochi Univ. of Tech. Y. Nojiri, S. Momota Irradiation of HCI beam

Appendix

Enhancement of E-loss

dE of HCI beam in C-foil (~10 nm)

