Ion Beam Lithography by Use of Highly Charged Ar Ion Beam

S. Momota1, S. Iwamitsu1, S. Goto1, Y. Nojiri1, J. Taniguchi2, I. Miyamoto2, H. Ohno2, N. Morita3 and N. Kawasegi3

1 Kochi Univ. of Tech., Miyano-kuchi, Tosayamada, Kochi, Japan
2 Tokyo Univ. of Science, Yamasaki, Noda, Chiba, Japan
3 Toyama Univ., Gofuku, Toyama, Toyama, Japan

Ion beam lithography (IBL) is a useful technique to fabricate nano-structures. In order to develop this technique furthermore, highly charged ion (HCl) beam was applied to this technique. Higher throughput and unique fabrication are expected caused by high activity of HCls.

Ar1+ and Ar9+ ion beams with \(E = 90 \text{ keV} \) were prepared by a facility built at Kochi University of Technology [1], and irradiated onto spin-on-glass (SOG) through a stencil mask. The facility includes an ECR ion source (NANOGAN, 10 GHz), a beam transport and analysis system, and an irradiation system. The fluence of Ar ions was monitored during the beam irradiation. The irradiated SOG was etched by a solution of HF for one minute.

The step structure was successfully fabricated on SOG by the chemical etching after the irradiation. The depth of the step structure using Ar9+ increasing linearly with the fluence of Ar ions and was greater than the depth obtained using Ar1+ ions as shown in Fig. 1. This result shows the effectiveness of HCl beam for IBL.

![Graph](image-url)

Fig. 1 The depth of the step structure as a function of the fluence of Ar ion

References