Target effect of fragmentation reactions at intermediate energy

Sadao Momota, Y. Nojiri
Kochi University of Technology

M. Kanazawa, A. Kitagawa, M. Suda, M. Sasaki, S. Sato
National Institute of Radiological Sciences

2005 2nd Joint Meeting of the Nuclear Physics Divisions of the APS and The Physical Society of Japan
Motivation

- Study on production of projectile-like fragments (PLF)
 - Production mechanism
 - Application of RIB to various fields

- Systematic measurements of
 - Momentum distribution
 - Production cross section ($\sigma_{\text{Prod.}}$)
Projectile fragmentation process

Formation of pre-fragment
De-excitation of pre-fragment

Momentum distribution of projectile-like fragment (PLF)

Prod. Rate

\[P_F \quad \Delta P \quad P_0 \quad \sigma_P \]
Methods to estimate $\sigma_{\text{Prod.}}$ of PLF

1. Empirical formulation

 EPAX2

 $$S = S_2 \left(A_p^{1/3} + A_T^{1/3} + S_1 \right)$$

2. Statistical model

 Statistical abrasion-ablation model

3. Microscopic model

 QMD, AMD
Experimental setup

HIMAC-NIRS

A. Identification of fragments
 Measurements of momentum
 TOF : F1 - F2 (or F3)
 ΔE : F2 (or F3)
 Bρ : D1, D2

B. Definition and acceptance of angle
 Deflection of primary beam + F0-Slit

C. Normalization of production rate
 Measurement of primary-beam intensity
Measurements

$^{40}\text{Ar} \ (290\text{MeV/A}) \ + \ ^{12}\text{C} \ (1.0 \ \text{mm})$

$^{27}\text{Al} \ (0.8 \ \text{mm})$

$^{93}\text{Nb} \ (0.5 \ \text{mm})$

$^{197}\text{Au} \ (0.333 \ \text{mm})$

Measurements of P_L, P_T distributions

P_L distribution $\leftarrow B\rho$ distribution

P_T distribution \leftarrow Angular distribution

$\text{Ar} + \text{Au} \rightarrow ^{^{A}}\text{O}$
Angular distribution of PLF

$^{40}\text{Ar}(290 \text{ MeV/A}) + ^{197}\text{Au}(0.333 \text{mm}) \rightarrow ^{39}\text{Cl}$
Observed $\sigma_{\text{Prod.}}$ of PLF

$^{40}\text{Ar}(290 \text{ MeV/A}) + ^{27}\text{Al}(0.8 \text{ mm}) @ \text{NIRS}$
Isotopic/Isotonic distribution of $\sigma_{\text{Prod.}}$

![Graphs showing isotopic/isotonic distribution](image-url)
Isotopic/Isotonic distribution of $\sigma_{\text{Prod. 2}}$

$\sigma(\text{Obs.})/\sigma(\text{EPAX2})$

- **Obs.**
- **SAA**

Graphs showing the distribution of production cross-sections for different targets (C, Al, Nb, Au) with Z_F and N_F axes.
Isotopic/Isotonic distribution of $\sigma_{\text{Prod. 3}}$

$$\frac{\sigma(\text{Al, Nb, Au})}{\sigma(\text{EPAX2})} \div \frac{\sigma(\text{C})}{\sigma(\text{EPAX2})}$$
Isotopic/Isotonic distribution of $\sigma_{\text{Prod. 4}}$

Energy dependence: \[
\frac{\sigma(\text{Be, 90})}{\sigma(\text{Be, EPAX2})} / \frac{\sigma(\text{C, 290})}{\sigma(\text{C, EPAX2})}
\]

![Obs. graph]

![SAA graph]
Conclusion

- σ_{Prod} of PLF measured for $^{40}\text{Ar} + ^{12}\text{C}$, ^{27}Al, ^{93}Nb, ^{197}Au at 290 MeV/u

- Isotopic/isotonic distribution of σ_{Prod}
 - Pair and shell effect
 - Target effect

- Enhancement of productivity for IMF at 90 MeV/u
Particle identification

$^{40}\text{Ar} \ (290\text{MeV/A}) + ^{197}\text{Au} \ (0.333 \text{ mm})$

$B_\\rho = 4.996 \ [\text{T-m}]$

$\Delta \theta = 26 \ [\text{mrad}]$

$\Delta P/P_0 = 1 \ [%]$

$A/Z = 2$

$Z = 18$
Momentum distribution

SD of momentum distributions

\[\sigma_L^2 = \sigma_I^2 \quad \sigma_T^2 = \sigma_I^2 + \sigma_D^2 + \sigma_C^2 \]

1) Fermi momentum of nucleons

\[\sigma_L^2 = \frac{F(A - F)}{A - 1} \sigma_0^2 \quad \sigma_0 = 90 \text{ MeV/c} \]

2) Deflection of projectile in target nucleus

\[\sigma_D^2 = \frac{F(A - F)}{A(A - 1)} \sigma_{1\perp}^2 \quad \sigma_{1\perp} = 195 \text{ MeV/c} \]

3) Coulomb final state interaction

\[\sigma_C^2 = \pm \frac{\sqrt{2\pi}}{4} (Z_A - Z_F) C_0 \sigma_{D\perp} + \]

\[C_0^2 (Z_A - Z_F) \left\{ \frac{1}{3} + \frac{Z_A - Z_F - 1}{8} \right\} \]